• Title/Summary/Keyword: So-Oak stream watershed

Search Result 3, Processing Time 0.017 seconds

Effect of Pollutants Control Measures in So-oak Watershed on the Control of Algae Growth in Daecheong Reservoir (소옥천 유역의 오염제어 대책에 따른 대청호 조류저감 효과 분석)

  • Park, Hyung Seok;Yoon, Sung Wan;Chung, Se Woong;Hwang, Hyun Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.4
    • /
    • pp.248-260
    • /
    • 2016
  • This study was aimed to assess the effect of diverse pollutants control measures suggested in the Chuso basin and its upstream of So-oak stream watershed where are the most concerned areas on the control of algal bloom occurring in Daecheong Reservoir. The control measures were classified as watershed measures and in-reservoir measures, and their effects were simulated using a two-dimensional hydrodynamic and water quality model. The watershed measures were made up of 1) point sources control, non-point sources control, and their combinations. The in-reservoir measures were supposed to treat sediment at Chuso basin and to install a phosphorus elimination plant (PEP) at the end of So-oak stream. The results showed that the effect of each measure was influenced by the hydrological condition of the year. In wet year, as the contribution of non-point sources increased, the non-point source control measures (NPS1~NPS4) showed more effective compared to other measures, while, the PEP system to eliminate phosphorus from So-oak stream showed better performance in dry year. In particular, the scenario of NPS1, in which all livestock manures were collected and treated but only chemical fertilizers (NPS1) were used for agriculture fields, showed the best performance for the control of algal bloom in Chuso basin among the watershed measures.

A Study on the Analysis and Evaluation of Vulnerability Index for the Management of Nonpoint source in SoOak River Watershed (소옥천 유역 비점오염 관리를 위한 취약성 지수분석 및 평가에 관한 연구)

  • KAL, Byung-Seok;MUN, Hyun-Saing;HONG, Seon-Hwa;PARK, Chun-Dong;GIL, Han-nui;PARK, Jae-Beom
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.107-120
    • /
    • 2019
  • In this study, the characteristics of watershed and pollution source were investigated in SoOakcheon located in the upper stream of Daecheong Lake. The Dimension Index method was applied to index various watershed and pollution source data. The influence factors of each pollutant source were derived through correlation analysis between selected index and water quality monitoring data. BOD and COD were significantly influenced by population density and land area ratio, T-N by CN and rice area ratio, and T-P by population density and land area ratio, respectively. The discharge load is often used to establish non-point source countermeasures, but there is a difference between the water load and the water load in the lake or river. Therefore, in order to manage non-point pollution efficiently, it is necessary to analyze influential factors with high correlation with water quality and to manage the relevant factors with priority.

Influences of the devastated forest lands on flood damages (Observed at Chonbo and the neighbouring Mt. Jook-yop area) (황폐임야(荒廢林野)가 수해참상(水害慘狀)에 미치는 영향(影響) (천보산(天寶山)과 인접(隣接) 죽엽산(竹葉山)을 중심(中心)으로))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.5 no.1
    • /
    • pp.4-9
    • /
    • 1966
  • 1. On 13 September 1964 a storm raged for 3 hours and 20 minutes with pounding heavy rainfalls, and precipitation of 287.5 mm was recorded on that day. The numerous landslides were occured in the eroded forest land neighbouring Mt. Chunbo, while no landslides recorde at all on Mt. Jookyup within the premise of Kwangnung Experiment Station, the Forest Experiment Station. 2. Small-scalled Landslides were occured in 43 different places of watershed area (21.97 ha.) in which the survey had already been done, in and around Mt. Chunbo (378 m a.s.l.). The accumulated soil amount totaled $2,146,56m^3$ due to the above mentioned landslides, while soil accumulated from riverside erosion has reached to $24,168.79m^3$, consisting of soils, stones, and pebbles. However, no landslides were reported in the Mt. Jook yup area because of dense forest covers. The ratio of the eroded soil amount accumulated from the riversides to that of watershed area was 1 to 25. On the other hand, the loss and damage in the research area of Mt. Chonbo are as follows: 28 houses completly destroyed or missing 7 houses partially destroyed 51 men were dead 5 missing, and 57 wounded. It was a terrible human disaster However, no human casualties were recorded at all, 1 house-completly destroyed and missing, 2 houses-partially destroyed. Total:3 houses were destroyed or damaged, in The area of Mt. Jookyup 3. In the calculation of the quanty of accumulated soil, the or mula of "V=1/3h ($a+{\sqrt{ab}}+b$)" was used and it showed that 24, 168.79m of soil, sands, stones and pebbles carried away. 4. Average slope of the stream stood 15 at the time of accident and well found that there was a correlation between the 87% of cross-area sufferd valley erosion and the length of eroded valley, after a study on regression and correlation of the length and cross-area. In other works, the soil erosion was and severe as we approached to the down-stream, counting at a place of average ($15^{\circ}1^{\prime}$) and below. We might draw a correlation such as "Y=ax-b" in terms of the length and cross-area of the eroded valley. 5. Sites of char-coal pits were found in the upper part of the desert-like Mt. Chunbo and a professional opinion shows that the mountain was once covered by the oak three species. Furthermore, we found that the soil of both mountains have been kept the same soil system according to a research of the soil cross-area. In other words, we can draw out the fact that, originally, the forest type and soil type of both Mt. Chunbo (378m) and Mt. Jookyup (610m) have been and are the same. However, Mt. Chunbo has been much more devastated than Mt. Jookyup, and carried away its soil nutrition to the extent that the ratios of N. $P_2O_5K_2O$ and Humus C.E.C between these two mountains are 1:10;1:5 respectively. 6. Mt. Chunbo has been mostly eroded for the past 30 years, and it consists of gravels of 2mm or larger size in the upper part of the mountain, while in the lower foot part, the sandy loam was formulated due to the fact that the gluey soil has been carried and accumulated. On the hand, Mt. Jookyup has consitantly kept the all the same forest type and sandy loam of brown colour both in the upper and lower parts. 7. As for the capability of absorbing and saturating maximum humidity by the surface soil, the ratios of wet soil to dry soil are 42.8% in the hill side and lower part of the eroded Mt. Chunbo and 28.5% in the upper part. On the contrary, Mt. Jookyup on which the forest type has not been changed, shows that the ratio in 77.4% in the hill-side and 68.2% in the upper part, approximately twice as much humidity as Mt. Chunbo. This proves the fact that the forest lands with dense forest covers are much more capable of maintaining water by wood, vegitation, and an organic material. The strength of dreventing from carring away surface soil is great due to the vigorous network of the root systems. 8. As mentioned above, the devastated forest land cause not only much greater devastation, but also human loss and property damage. We must bear in mind that the eroded forest land has taken the valuable soil, which is the very existance of origin of both human being and all creatures. As for the prescription for preventing erosion of forest land, the trees for furtilization has to be planted in the hill,side with at least reasonable amount of aertilizer, in order to restore the strength of earth soil, while in the lower part, thorough erosion control and reforestation, and establishments along the riversides have to be made, so as to restore the forest type.

  • PDF