• Title/Summary/Keyword: Snowfall enhancement

Search Result 4, Processing Time 0.016 seconds

The Study on Influence Factors of Snowfall Enhancement Used by Orographic Cloud Seeding in a Mountainous Area

  • Yang, Ha-Young;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.214-218
    • /
    • 2014
  • The main objective of this study is to analyse the influence factors of snowfall enhancement by glaciogenic seeding in a mountainous area. Twenty-five seeding experiments have been conducted during the period of February to April 2010. To use two rates seeding experiments (SR1: $1.04g\;min^{-1}$, SR2: $2.08g\;min^{-1}$) have been tested to get an appropriate ratio for snowfall enhancement at Daegwallyeong area. The conditions of seeding are able as followings: surface temperature <$0^{\circ}C$, wind speed <5 m/s, wind direction between 0 and $130^{\circ}$. The experiment results indicated that in the case of SR1 was more effective than SR2. The number of small ice particles below 1.0 mm was increased during seeding period measured by PARSIVEL disdrometer near generator. Most of snowfall enhancement by seeding was observed the inflow of the easterly wind blew in toward Gangwon regions from the East Sea and the supersaturated supercooled liquid water due to orographic effect.

Analysis of the Effects of Airborne Snowfall Enhancement Experiments Based on Atmospheric Stability: A Case Study of the IJCO-WCE 2019 Campaign (대기 안정도에 따른 인공증설 항공실험 효과 분석: IJCO-WCE 2019 캠페인 사례 연구)

  • A-Reum Ko;Bu-Yo Kim;Woonseon Jung;Ji-Hyoung Kim;Jung Mo Ku;Ki-Ho Chang;Joo Wan Cha;Chulkyu Lee;Yong Hee Lee
    • Atmosphere
    • /
    • v.34 no.4
    • /
    • pp.445-462
    • /
    • 2024
  • This study analyzes and compares the results of airborne snowfall enhancement experiments conducted on November 25 and 28, 2019, as part of the International Joint Cloud Observation and Weather Control Experiment (IJCO-WCE) 2019 campaign. The objective was to assess the effects of experimental interventions on cloud precipitation patterns. To address the challenges in verifying artificial snowfall enhancement, this study proposes an innovative approach, utilizing a post-experiment zigzag flight path for in-situ observations. This approach allowed for detailed comparisons between affected and unaffected cloud regions. Precipitation was observed in the target area on the leeward side on November 25, whereas no precipitation was recorded during the November 28 experiment. We concluded that airborne snowfall enhancement is more effective when the lower atmosphere is unstable at the rear of a trough, as confirmed by changes in the distribution of precipitation particles in the clouds and on the ground. Two identical flight experiments were conducted using the KMA/NIMS atmospheric research aircraft, allowing detailed observations. Data collected from onboard cloud observation instruments and six ground stations facilitated detailed analyses of changes in the concentration and size distribution of cloud particles (e.g., supercooled droplets, ice crystals, and snow particles). The method of comparing particle sizes between clouds affected and unaffected by the experiments is used to verify the effectiveness of artificial snowfall enhancement techniques. This methodology could be widely adopted in future studies to improve our understanding of weather modification strategies.

Analysis of the West Coast Heavy Snowfall Development Mechanism from 23 to 25 January 2016 (2016년 1월 23일~25일에 발생한 서해안 대설 발달 메커니즘 분석)

  • Lee, Jae-Geun;Min, Gi-Hong
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.53-67
    • /
    • 2018
  • This study examined the lake effect of the Yellow Sea which was induced by the Siberian High pressure system moving over the open waters. The development mechanism of the convective cells over the ocean was studied in detail using the Weather Research and Forecasting model. Numerical experiments consist of the control experiment (CTL) and an experiment changing the yellow sea to dry land (EXP). The CTL simulation result showed distinct high area of relative vorticity, convergence and low-level atmospheric instability than that of the EXP. The result indicates that large surface vorticity and convergence induced vertical motion and low level instability over the ocean when the arctic Siberian air mass moved south over the Yellow Sea. The sensible heat flux at the sea surface gradually decreased while latent heat flux gradually increased. At the beginning stage of air mass modification, sensible heat was the main energy source for convective cell generation. However, in the later stage, latent heat became the main energy source for the development of convective cells. In conclusion, the mechanism of the west coast heavy snowfall caused by modification of the Siberian air mass over the Yellow Sea can be explained by air-sea interaction instability in the following order: (a) cyclonic vorticity caused by diabatic heating induce Ekman pumping and convergence at the surface, (b) sensible heat at the sea surface produce convection, and (c) this leads to latent heat release, and the development of convective cells. The overall process is a manifestation of air-sea interaction and enhancement of convection from positive feedback mechanism.

A Case Study on the Impact of Ground-based Glaciogenic Seeding on Winter Orographic Clouds at Daegwallyeong (겨울철 대관령지역 지형성 구름에 대한 지상기반 구름씨뿌리기 영향 사례연구)

  • Yang, Ha-Young;Chae, Sanghee;Jeong, Jin-Yim;Seo, Seong-Kyu;Park, Young-San;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.301-314
    • /
    • 2015
  • The purpose of this study was to investigate the impact of ground-based glaciogenic seeding on orographic clouds in the Daegwallyeong area on 13 March, 2013. The experiments was conducted by releasing silver iodide (AgI) under following conditions: surface temperature below $-4^{\circ}C$, wind direction between 45 and $130^{\circ}$, and wind speed less than $5ms^{-1}$. Two seeding rates, $38gh^{-1}$ (SR1) and $113gh^{-1}$ (SR2), were tested to obtain an appropriate AgI ratio for snowfall enhancement in the Daegwallyeong area. Numerical simulations were carried out by using the WRF (Weather Research and Forecast) model with AgI point-source module which predicted dispersion fields of AgI particles. The results indicated that the target orographic clouds contained adequate amount of supercooled liquid water and that the dispersion of AgI particles tended to move along the prevailing wind direction. To validate the seeding effects, the observation data from FM-120 and MPS as well as PARSIVEL disdrometer were analyzed. In this case study, glaciogenic seeding significantly increased the concentration of small ice particles below 1 mm in diameter. The observation results suggest that SR1 seeding be reasonable to use the ground-based seeding in the Daegwallyeong area.