• Title/Summary/Keyword: Snowfall detection algorithm

Search Result 4, Processing Time 0.017 seconds

Study on the Development of Road Icing Forecast and Snow Detection System Using State Evaluation Algorithm of Multi Sensoring Method (복합 센서의 상태 판정 알고리즘을 적용한 노면결빙 예측 및 강설 감지 시스템 개발에 관한 연구)

  • Kim, Jong-Woo;Jung, Young-Woo;Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.113-121
    • /
    • 2013
  • The road icing forecast and snow detection system using state evaluation algorithm of multi sensor optimizes snow melting system to control spread time and amount of chemical spread application This system operates integrated of contact/non-contact sensor and infrared camera. The state evaluation algorithm of the system evaluates road freezing danger condition and snowfall condition (snowfall intensity also) using acquired data such as temperature/humidity, moisture detection and result of image signal processing from field video footage. In the field experiment, it proved excellent and reliable evaluated result of snowfall state detection rate of 89% and wet state detection rate of 94%.

Road Area Snowfall Intensity Detection from CCD Imagery (CCD 영상을 이용한 도로 강설강도 탐지)

  • Youn, Jun Hee;Kim, Gi Hong;Kim, Tae Hoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.1
    • /
    • pp.89-97
    • /
    • 2013
  • Recently, economic and social damages are globally increased due to the heavy snowfall caused by global warming. To reduce the damages of sudden regional heavy snow in roads, suitable countermeasures should be established based on the accurate detection of snowfall intensity for each roadway segment. In this paper, we deal with snowfall intensity detecting algorithm in the road area from CCD Imagery. First, we determine the MLZ (MotionLess Zone), which does not contain lane markings and moving cars, in the image space. Next, snow streaks trespassing the MLZ are extracted with Canny operator and proposed algorithm. Also, the concept of SII (Snow Intensity Index), which is the number of snow streaks during one minute in the MLZ, is defined. Finally, the effectiveness of proposed algorithm is proved by visually comparing the imagery and SII value obtained during 69 minutes. In consequence, we figured out that the integration of SII is significantly related to an actual amount of snowfall.

Heavy Snowfall Disaster Response using Multiple Satellite Imagery Information (다중 위성정보를 활용한 폭설재난 대응)

  • Kim, Seong Sam;Choi, Jae Won;Goo, Sin Hoi;Park, Young Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.135-143
    • /
    • 2012
  • Remote sensing which observes repeatedly the whole Earth and GIS-based decision-making technology have been utilized widely in disaster management such as early warning monitoring, damage investigation, emergent rescue and response, rapid recovery etc. In addition, various countermeasures of national level to collect timely satellite imagery in emergency have been considered through the operation of a satellite with onboard multiple sensors as well as the practical joint use of satellite imagery by collaboration with space agencies of the world. In order to respond heavy snowfall disaster occurred on the east coast of the Korean Peninsula in February 2011, snow-covered regions were analyzed and detected in this study through NDSI(Normalized Difference Snow Index) considering reflectance of wavelength for MODIS sensor and change detection algorithm using satellite imagery collected from International Charter. We present the application case of National Disaster Management Institute(NDMI) which supported timely decision-making through GIS spatial analysis with various spatial data and snow cover map.

Application of Landsat TM/ETM+ Images to Snow Variations Detection by Volcanic Activities at Southern Volcanic Zone, Chile (Landsat TM/ETM+ 위성영상을 활용한 칠레 Southern Volcanic Zone의 화산과 적설변화와의 상관성 연구)

  • Kim, Jeong-Cheol;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.287-299
    • /
    • 2017
  • The Southern Volcanic Zone (SVZ) of Chile consists of many volcanoes, including the Mt.Villarrica and Mt.Llaima, and the two volcanoes are covered with snow at the top of Mountain. The purpose of this study is to analyze the relationship between the ice caps and the volcanic activity of the two volcanoes for 25 years by using the satellite image data are available in a time series. A total of 60 Landsat-5 TM and Landsat-7 ETM + data were used for the study from September 1986 to February 2011. Using NDSI (Normalized Difference Snow Index) algorithm and SRTM DEM, snow cover and snowline were extracted. Finally, the snow cover area, lower-snowline, and upper-snowline, which are quantitative indicators of snow cover change, were directly or indirectly affected by volcanic activity, were extracted from the satellite images. The results show that the volcanic activity of Villarrica volcano is more than 55% when the snow cover is less than 20 and the lower-snowline is 1,880 m in Llaima volcano. In addition, when the upper-snowline of the two volcanoes is below -170m, it can be confirmed that the volcano is differentiated with a probability of about 90%. Therefore, the changes in volcanic snowfall are closely correlated with volcanic activity, and it is possible to indirectly deduce volcanic activity by monitoring the snow.