• Title/Summary/Keyword: Snow crab cooker effluent

Search Result 10, Processing Time 0.018 seconds

Volatile Flavor Components in Boiled Snow Crab (Chionoecetes japonicus) and Its Concentrated Cooker Effluent

  • Park, Sung-Hee;Kim, Young-Man;Hyun, Sook-Kyung
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2001
  • The volatile flavor components of snow crabs from the Young-duk coast of Korea and their concentrated cooker effluent were isolated by a modified method from Likens and Nickerson, using a simultaneous distillation and extraction apparatus. The concentrated extract was analyzed and identified by gas chromatography and GC-MS. The flavor profile of boiled crab demonstrated that the favorable flavor characteristic of crab involved a seafood-like note, and that of concentrated cooker effluent demonstrated that the weak boiled crab flavor involved a fishy note. The main flavor components of boiled crab were heterocyclic compounds including alkylpyrazines, thizoles and thiolanes, aliphatic ketones including 2-heptanone and nonanone. On the other hand, the main flavor components of cooker effluent were aldehydes including 3-methylbutanal, alipatic ketones including 2-heptanone and alkanes including 2,6,10,14-tetramethyl-pentadecane. Almost all of heterocyclic compounds, which seem to be important contributors to the flavor of boiled crab, were not identified in concentrated cooker effluent. As a result, there may be a need to add the crab flavor components formed through model experiments of Maillard reactions to the concentrated cooker effluent for human consumption.

  • PDF

Quantitative Analysis of Alkylpyrazines in Snow Crab Cooker Effluents

  • Cha, Yong-Jun;Baek, Hyung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.454-458
    • /
    • 1995
  • Alkylpyrazines in snow crab cooker effluent(SCCE) and effluent concentrate(EC) were quantitatively analyzed and compared by simultaneous steam distillation-solvent extraction/gas chromatography/mass spectrometry(SDE/GC/MS). A total of 11 pyrazines were identified in both SCCE and EC. Amounts of tetramethylpyrazine, 2,5-dimethylpyrazine, trimethylpyrazine, and 2,6-dimethylpyrazine were 23.0, 21.1, 13.8, and 13.3 times higher, respectively, in EC than those in SCCE. The total amount of pyrzines in EC (1664.0${\pm}$171.1ng/g) was 8.1 times higher than that in SCCE(204.5${\pm}$32.2). The compounds, ethylpyrazine and 2-ethyl-3,6-dimethylpyrazine, were only detected in EC.

  • PDF

Changes in Volatile Flavor Compounds in Red Snow Crab Chionoecetes japonicus Cooker Effluent during Concentration (붉은 대게 가공부산물 농축중의 휘발성 향기성분 변화)

  • Ahn, Jun-Suck;Cho, Woo-Jin;Jeong, Eun-Jeong;Cha, Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.437-440
    • /
    • 2006
  • To develop natural crab-like flavorants from red snow crab Chionoecetes japonicus cooker effluent (RSCCE), the flavor was analyzed during the concentration of RSCCE up to $40^{\circ}Brix$. Using solid phase microextraction (SPME)/gas chromatography (GC)/mass selective detection (MSD), 30 volatile flavor compounds were detected in four RSCCE samples (10, 20, 30, and $40^{\circ}Brix$). These comprised 12 aromatic compounds, 5 N-containing compounds, 2 5-containing compounds, 2 alcohols, 2 aldehydes, and 7 miscellaneous compounds. The amounts of all volatiles except alcohols and aldehydes increased significantly with the concentration (p<0.05). Of the volatiles detected, the most abundant was a dimethyl trisulfide with an odor like onion/cooked cabbage. Of the N-containing compounds (nutty, roasted peanut-like odor), 2-ethyl-5-methylpyrazine was the most abundant, followed by 2,5-dimethylpyrazine and 2-methyl-5-isopropylpyrazine in that order (p<0.05). The N- and S-containing compounds with characteristic odors detected in this experiment are thought to play a positive role in RSCCE during concentration.

Taste Components of the Hydrolysate of Snow Crab Chionoecetes japonicus Cooker Effluent as Precursors of Crab Flavorings (천연 게향 전구물질로서의 홍게(Chionoecetes japonicus) 자숙가수분해물의 정미적 특성)

  • Baek, Jeong-Hwa;Jeong, Eun-Jeong;Jeon, Seon-Young;Cha, Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.3
    • /
    • pp.232-237
    • /
    • 2012
  • Snow crab Chionoecetes japonicus cooker effluent (SCCE) is a processing byproduct that is produced in large quantities during snow crab processing. However, it is typically discarded due to the lack of a suitable application or used only as a seasoning following simple concentration. We performed a series of studies to make crab-like flavorings (CFs) from SCCE using response surface methodology and reaction flavor technology. To develop material for CFs, taste compounds in the precipitate of SCCE (PSCCE) and the enzymatic hydrolysate of PSCCE (EHSCCE) were analyzed. The content of free amino acids in EHSCCE was 21.6 times higher than that in PSCCE. The major compounds in PSCCE were arginine, glycine, taurine, alanine and sarcosine in that order; leucine, phenylalanine, arginine, valine and lysine were the major compounds in EHSCCE. Six nucleotides and related compounds were identified in EHSCCE. Hypoxanthine ($40.3{\mu}g/100g$) was the most abundant, followed by 5'-GMP ($22.9{\mu}g/100g$), ADP ($22.5{\mu}g/100g$), AMP ($21.0 {\mu}g/100g$), inosine ($3.6{\mu}g/100g$) and 5'-IMP ($2.3{\mu}g/100g$).

Characteristics of Concentrated Red Snow Crab Chionoecetes japonicus Cooker Effluent for Making a Natural Crab-like Flavorant (천연 게 향료 제조를 위한 농축 붉은 대게 가공 자숙액의 특성)

  • Ahn, Jun-Suck;Kim, Hun;Cho, Woo-Jin;Jeong, Eun-Jeong;Lee, Hee-Young;Cha, Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.431-436
    • /
    • 2006
  • This study was red snow crab Chionoecetes japonicus cooker effluent (RSCCE) for making a natural crab-like flavorant. The RSCCE ($1\;^{\circ}Brix$ in the initial state) was concentrated up to $40^{\circ}Brix$ to determine the optimal conditions for making a natural flavorant. During concentration, the amino-N content and total acidity increased with the concentration time, while the pH was maintained in range 7.94-8.78. In the acceptance test and quantitative description analysis (QDA), $20^{\circ}Brix$ RSCCE had the best quality in terms of taste (5.87), odor (6.00), and overall acceptance (5.80). Of the taste compounds analyzed in $20^{\circ}Brix$ RSCCE, lactic acid was an abundant non-volatile organic acid, and the nucleotide 5'-inosine monophosphate (IMP) was present, as were four free amino acids: tyrosine, glutamic acid, alanine and glycine. The taste and odor of boiled crabmeat were retained in $20^{\circ}Brix$ RSCCE based on the QDA.

Optimal Conditions for Enzymatic Hydrolysate of Snow Crab Chionoecetes japonicus Cooker Effluent Using Response Surface Methodology (RSM을 이용한 홍게(Chionoecetes japonicus) 자숙부산물의 최적 효소가수분해 조건)

  • Baek, Jeong-Hwa;Jeong, Eun-Jeong;Jeon, Seon-Young;Cha, Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.2
    • /
    • pp.99-103
    • /
    • 2011
  • This study was performed to determine the optimal hydrolysis conditions for the production of a flavoring from the precipitation of snow crab cooker effluent (PSCCE) with commercial proteases. Based on cost-per-enzyme activity and sensory evaluations, Flavourzyme$^{(R)}$ 500 MG plus Protamex$^{(R)}$ (1:1 ratio, w/w) were selected as suitable enzymes. Three independent variables consisting of the substrate concentration (S), enzyme-to-substrate ratio (E/S), and hydrolysis time (T) were examined using response surface methodology (RSM). A model equation obtained from RSM was used to predict the degree of hydrolysis (DH) as follows: % DH = 52.285 - 6.371[S] + 5.469[E/S] + 7.599[T] - $5.818[S]^2$ - $5.633[E/S]^2$ - $6.528[T]^2$ - 3.265[E/S][S] - 5.415[T][S] + 4.315[T][E/S]. From the ridge analysis, the conditions favoring the highest degree of hydrolysis were pH 7.45, $55^{\circ}C$, a S of 21.82%, an E/S of 0.50%, and a T of 3.74 h.

Characteristics of Taste Compounds of Red Snow Crab Cooker Effluent and Hepatopancreas for Developing a Crab-like Flavorant (게향 소재 개발을 위한 붉은 대게 자숙액 및 내장의 정미 성분 특성)

  • Cha, Yong-Jun;Cho, Woo-Jin;Jeong, Eun-Jeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.466-472
    • /
    • 2006
  • In order to develop materials of crab-like flavorant, taste compounds including physicochemical characteristics were analyzed in red snow crab cooker effluent(RSCCE) and hepatopancreas. The $30\;^{\circ}Brix$ was a suitable condition in from 1.5 to $40\;^{\circ}Brix$ RSCCE by sensory evaluation. Lactic acid and succinic acid were major compounds in non-volatile organic acids detected in both $30\;^{\circ}Brix$ RSCCE and hepatopanceras. The 5 compounds such as AMP, HxR, IMP, ATP and GMP were major in ATP related compounds of $30\;^{\circ}Brix$ RSCCE, whereas 3 compounds including IMP, GMP and Hx in hepatopanceras. The content of total free amino acids in hepatopancreas was 5.6 times higher than in $30\;^{\circ}Brix$ RSCCE. The major compounds in $30\;^{\circ}Brix$ RSCCE were followed by methionine, lysine, arginine, valine, histidine, alanine, hydroxy proline, and glycine in that order, whereas methyl histidine, leucine, alanine, glutamic acid, glycine, valine, threonine, taurine, isoleucine, and serine were followed in hepatopancreas. By adding 0.5%(w/w) hepatopancreas in $30\;^{\circ}Brix$ RSCCE, crab meat-like odor was kept high level by sensory evaluation.

Optimal Conditions of Reaction Flavor for Synthesis of Crab-like Flavorant from Snow Crab Cooker Effluent (홍게 자숙액으로부터 게향 제조를 위한 반응향의 최적화)

  • Ahn, Jun-Suck;Jeong, Eun-Jeong;Cho, Woo-Jin;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.128-134
    • /
    • 2014
  • To develop a crab-like flavorant from snow crab cooker effluent (SCCE, $20^{\circ}Brix$), optimal reaction conditions were determined using response surface methodology (RSM) combined with reaction flavoring technology (RFT). Using five variables (proline, glycine, arginine, methionine, fructose), RSM based on a five-level central composite design was applied to evaluate sensory acceptance (odor, taste, and overall acceptance) as dependent variables. A model equation obtained from RSM showed 0.88 of R-square for odor, 0.90 for taste, and 0.95 for overall acceptance with 0.07 lack of fit in overall acceptance (P<0.05). Odor score (predicted value) was 7.21 in the saddle point. Optimal flavoring conditions for making a crab-like flavorant were as follows: addition of 0.29 g of proline, 0.63 g of glycine, 0.61 g of arginine, 0.02 g of methionine, and 1.07 g% (w/v) of fructose into SCCE with RFT (90 min at $130^{\circ}C$). Odor score obtained under optimal conditions was 7.56, which was higher than the predicted value.

Changes in the Quality of Crab-like Flavorants during Storage (게 향미제의 저장중 품질특성 변화)

  • Baek, Jeong-Hwa;Jeong, Eun-Jeong;Jeon, Seon-Young;Cha, Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.2
    • /
    • pp.104-113
    • /
    • 2012
  • Crab-like flavorants (CFs) were made from snow crab cooker effluent (SCCE) using response surface methodology (RSM) and reaction flavoring technology (RFT). Type A CF was made from SCCE via RSM, RFT, adding starch syrup, centrifugation, and microfiltration. Type B was made from type A by adding the food additives dimethyl sulfide, ethyl valerate and fish sauce. The stability of the CFs was evaluated in terms of the color values, sensory evaluation, and flavor profiles after storage for 90 days at three different temperatures: 10, 20, and $30^{\circ}C$. The compounds, ethanol and 3-methyl-1-butanol, were considered key components of off-flavor and a decrease in dimethyl-2-vinylpyrazine affected the occurrence of off-flavor. It may be a microbial metabolite arising from contamination and lab-scale micro-filtration. At the lowest temperature ($10^{\circ}C$), the decrease in volatile compounds, such as pyrazines, was not as dramatic as at $20^{\circ}C$ and $30^{\circ}C$ and alcohol formation was prevented or delayed. Therefore, it is necessary to store CFs at < $10^{\circ}C$ with suitable sterilization to preserve volatile flavor compounds and prevent off-flavor from occurring.

Volatile Flavor Compounds of a Crab-like Flavoring Base Made Using Reaction Flavor Technology (반응향을 적용한 게향미제 Base의 휘발성 향기성분)

  • Ahn, Jun-Suck;Jeong, Eun-Jeong;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.102-109
    • /
    • 2014
  • Crab-like flavoring base (CFB) was made from a concentrated snow crab cooker effluent (SCCE) containing five food additives (proline, glycine, arginine, methionine, fructose) using reaction flavor technology (RFT). The volatile flavor compounds in CFB were compared between raw (SCCE) and control (without food additives) samples using solid phase microextraction (SPME) and gas chromatography with mass selective detector. A total of 74 compounds were detected in all samples (30 raw samples, 34 control samples, 55 CFB samples). A total of 22 nitrogen-containing compounds, including 19 pyrazines and 3 pyridines, were formed through RFT and increased 27 times compared to the control. Dimethyl trisulfide and dimethyl disulfide were predominant sulfur-containing compounds that increased through RFT, while aromatic compounds decreased through RFT. Seven compounds, tetramethylpyrazine, 2-ethyl-3,5,6-trimethylpyrazine, 2,3,5-trimethyl-6-(3-methylbutyl)pyrazine, 2-ethyl-3,5-dimethylpyrazine, 2,5-dimethyl-3-(3-methylbutyl)pyrazine, 2-ethyl-3,6-dimethylpyrazine, and 2-decanone potentially have a role in CFB odor by Pearson's correlation analysis.