• Title/Summary/Keyword: SnPt

Search Result 155, Processing Time 0.029 seconds

Fabrication and Characterization of Portable Electronic Nose System for Identification of CO/HC Gases (CO/HC 가스 인식을 위한 소형 전자코 시스템의 제작 및 특성)

  • Hong, Hyung-Ki;Kwon, Chul-Han;Yun, Dong-Hyun;Kim, Seung-Ryeol;Lee, Kyu-Chung;Kim, In-Soo;Sung, Yung-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.476-482
    • /
    • 1997
  • A portable electronic nose system has been fabricated and characterized using an oxide semiconductor gas sensor array and pattern recognition techniques such as principal component analysis and back-propagation artificial neural network. The sensor array consists of six thick-film gas sensors whose sensing layers are Pd-doped $WO_{3}$, Pt-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$ + Pd coated layer, $Al_{2}O_{3}$-doped ZnO and $PdCl_{2}$-doped $SnO_{2}$. The portable electronic nose system consists of an 16bit Intel 80c196kc as CPU, an EPROM for storing system main program, an EEPROM for containing optimized connection weights of artificial neural network, an LCD for displaying gas concentrations. As an application the system has been used to identify 26 carbon monoxide/hydrocarbon (CO/HC) car exhausting gases in the concentration range of CO 0%/HC 0 ppm to CO 7.6%/HC 400 ppm and the identification has been successfully demonstrated.

  • PDF

Ethanol Electro-Oxidation and Stability of Pt Supported on Sb-Doped Tin Oxide (안티몬 도핑된 주석 산화물에 담지된 백금 촉매의 에탄올 산화 반응 및 안정성 연구)

  • Lee, Kug-Seung;Park, Hee-Young;Jeon, Tae-Yeol;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • Electrocatalytic activities and stabilities of Pt supported on Sb-doped $SnO_2$ (ATO) were examined for ethanol oxidation reactions. Pt colloidal particles were deposited on ATO nanoparticles (Pt/ATO) and the prepared electrocatalysts were characterized by X-ray diffraction, transmission electron microscopy (TEM), and cyclic voltammetry. Electrochemical activity of the Pt/ATO for ethanol electro-oxidation was compared to those of Pt supported on carbon (Pt/C) and commercial PtRu/C. The activitiy of the Pt/ATO was much higher than those of the Pt/C and commercial PtRu/C. The Pt/ATO exhibited much higher electrochemical stabilities than the Pt/C in 0.5M ${H_2}{SO_4}$ and in 0.5M ${H_2}{SO_4}$/1M ${C_2}{H_5}OH$. According to TEM, the growth rate of Pt particles was lower in the Pt/ATO than it was in the Pt/C. The ATO nanoparticle appears to be a promising support material that promotes electrochemical reactions and stabilizes catalyst particles in direct ethanol fuel cell.

Photosensitization of $SnO_2$ Electrode by Eosin B in Acetonitrile (아세토니트릴에서 Eosin B에 의한 $SnO_2$ 전극의 감광화)

  • Kang Man-Koo;Yoon Kil-Joong;Kim Kang-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.75-80
    • /
    • 1992
  • The electrochemical spectral sensitization of a $SnO_2$ electrode with eosin B, a Xanthene dye, has been studied in acetonitrile. Measurements of the photocurrent have been carried out in the presence of supersensitizers such as thiourea, 1-allyl-2-thiourea, NaSCN, and NaI. The magnitude of the supersensitized photocurrent was greater than that of the sensitized photocurrent for all of the supersensitizers studied. However, the long time span of irradiation causes a significant decrease of the supersensitized photocurrent as well as the absorbance. These results, together with infrared spectra and fluorescence spectra, are taken into account to elucidate the mechanism of photoreaction between eosin B and supersensitizers in acetonitrile.

  • PDF

Efficiency Improvement of Metal-Mesh Electrode Type Photoelectrochemical Cells by Oxides Layer Coatings (산화물박막 증착에 의한 금속 메쉬전극 구조 광전기화학셀의 효율 개선에 관한 연구)

  • Han, Chi-Hwan;Park, Seon-Hee;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.584-587
    • /
    • 2011
  • In this work, the $TiO_2$ and $SnO_2$ thin films as blocking layers were coated directly onto the metal-mesh electrode surface to prevent unnecessary inflow of back-transfer electrons from the electrolyte ($I^-/I_3^-$) to the metal-mesh electrode. The DSCs were fabricated with working electrode of SUS mesh coated with blocking $TiO_2$ and $SnO_2$ layers, dye-attached mesoporous $TiO_2$ film, gel electrolyte and counter electrode of Pt-deposited F:$SnO_2$. From the experimental result, it was ascertained that the efficiency of metal electrode coated with $TiO_2$ by Dip-coating was superior to that of metal electrode coated with $SnO_2$ by Dip-coating and screen printing with the results of experiments. The photo-current conversion efficiency of the cell obtained from optimum fabrication condition was 3% ($V_{oc}$=0.61V, $J_{sc}$=11.64 mA/$cm^2$, ff=0.64) under AM1.5, 100 mW/$cm^2$ illumination.

Comparison of sensitivity of gas sensors using sensing materials with mono and binary catalyst system (단원계 및 이원계 촉매 시스템의 감지 물질을 이용한 가스 센서의 감지 특성 비교)

  • Hong, Sung-Jei;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.67-70
    • /
    • 2003
  • 단원계 및 이원계 촉매를 이용하여 나노 감지 소자를 합성하였고, 이를 이용하여 가연성 후막 가스 센서를 제작, 촉매 시스템에 따른 가스 감지 특성을 비교하였다. 단원계의 경우 Pd 및 Pt를 각각 3wt%로, 이원계의 경우 Pd:Pt 농도를 1:2~2:1wt%로 각각 제어하여 평균 입도가 15 nm 인 $SnO_2$ 나노 분말에 도핑, 감지물질을 합성하였다. 그 후 감지물질을 paste로 만들어 인쇄, 가스센서 제작 후 $450{\sim}600^{\circ}C$의 온도로 열처리하였다. 그 결과 이원계 촉매 시스템을 가진 가스 센서는 시효 시간에 따라 감도 값이 변하는 불안정한 현상을 나타내었다, 그러나 단원계 촉매의 경우 시효 시간이 지나도 감도 값이 안정된 현상을 나타내었다. 특히 3wt% pt를 도핑하여 $500^{\circ}C$에서 열처리한 경우 5시간 시효 후에도 감도 값의 변화 폭이 3.5% 이하의 매우 안정된 특성을 나타내었고 반응 시간도 20초 이하로 매우 빠른 응답 특성을 나타내었다.

  • PDF

Ferroelectric properties of Pb[(Zr. Sn)Ti]NbO$_3$Thin Films prepared by RF Magnetron Sputtering Method (RF 마그네트론 스퍼터링 방법으로 제작된 Pb[(Zr. Sn)Ti]NbO$_3$박막의 강유전 특성)

  • 최우창;최혁환;이명교;권태하
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.199-202
    • /
    • 1999
  • 반강유전 물질인 Pb[(Zr. Sn)Ti]NbO₃를 La/sub 0.5/Sr/sub 0.5/CoO₃/Pt/Ti/SiO₂/Si 기판상에 RF 마그네트론 스퍼터링 방법으로 박막화하여 그 결정성과 전기적 특성을 조사하였다. 80 W의 RF power, 400℃의 기판온도, Ar:O₂= 9:0.5의 분위기에서 증착되고, 650 ℃에서 10초동안 RTP(Rapid Thermal Process) 방법으로 열처리된 박막이 가장 우수한 페로브스카이트 구조를 보였으며, 10 ㎑ 에서 유전상수(ε')는 721, 유전손실(tan δ)은 0.06을 나타내었다. 잔류분극(Pr)은 15.5 μC/㎠ 였으며, 항전계(Ec)는 51 ㎸/㎝로 비교적 낮은 값을 나타내었다.

  • PDF

Fabrication and Properties of ZnSnO3 Piezoelectric Films Deposited by a Pulsed Laser Deposition (Pulsed Laser Deposition 방법으로 증착된 ZnSnO3 압전 박막의 성장과 특성 평가)

  • Park, Byeong-Ju;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.18-21
    • /
    • 2014
  • Because the Pb-based piezoelectric materials showed problems such as an environmental pollution. lead-free $O_3$ materials were studied in the present study. The $O_3$ thin films were deposited at $640^{\circ}C$ on $Pt/Ti/SiO_2$ substrate by pulsed laser deposition (PLD) and were annealed for 5 min at $750^{\circ}C$ using rapid thermal annealing (RTA) in nitrogen atmosphere. Samples annealed at $750^{\circ}C$ showed a smooth morphology and an improvement of the dielectric and leakage properties, as compared with as-grown samples. However, electrical properties of the $O_3$ thin films obtained in the present study should be improved for piezoelectric applications.

Fabrication and characterization of $SnO_2$ anode thin film for thin film secondary battery (박막형 2차전지용 $SnO_2$음극 박막의 제작 및 특성 평가)

  • 이성준;신영화;윤영수;조원일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.571-574
    • /
    • 2000
  • In this study, Tin oxide thin film for secondary battery was deposited on Pt/Ti/Si(100). It was fabricated by r.f. reactive sputtering with Tin metal target. At constant power (130W), pressure (Base 5$\times$10$^{-6}$ Torr, working 5$\times$10$^{-3}$ Torr) and at room temperature, it was fabricated by Ar/O2 gas ratio. After deposition, we got AFM & SEM to investigated surface of thin films and had XRD to find crystalline of thin films. Charge/discharge characteristics were carried out in 1M LiPF$_{6}$ , EC:DMC = 1:1 liquid electrolyte using lithium metal at room temperature.

  • PDF