• 제목/요약/키워드: Sn3.0Ag0.5Cu

검색결과 215건 처리시간 0.019초

Sn-3Ag-0.5Cu Solder에 대한 무전해 Ni-P층의 P함량에 따른 특성 연구 (A Study of Properties of Sn-3Ag-0.5Cu Solder Based on Phosphorous Content of Electroless Ni-P Layer)

  • 신안섭;옥대율;정기호;김민주;박창식;공진호;허철호
    • 한국전기전자재료학회논문지
    • /
    • 제23권6호
    • /
    • pp.481-486
    • /
    • 2010
  • ENIG (electroless Ni immersion gold) is one of surface finishing which has been most widely used in fine pitch SMT (surface mount technology) and BGA (ball grid array) packaging process. The reliability for package bondability is mainly affected by interfacial reaction between solder and surface finishing. Since the behavior of IMC (intermetallic compound), or the interfacial reaction between Ni and solder, affects to some product reliabilities such as solderability and bondability, understanding behavior of IMC should be important issue. Thus, we studied the properties of ENIG with P contents (9 wt% and 13 wt%), where the P contents is one of main factors in formation of IMC layer. The effect of P content was discussed using the results obtained from FE-SEM(field-emission scanning electron microscope), EPMA(electron probe micro analyzer), EDS(energy dispersive spectroscopy) and Dual-FIB(focused ion beam). Especially, we observed needle type irregular IMC layer with decreasing Ni contents under high P contents (13 wt%). Also, we found how IMC layer affects to bondability with forming continuous Kirkendall voids and thick P-rich layer.

BGA 패키지에 사용된 유/무연 솔더의 신뢰성 평가 (Reliability Estimation of Lead and Lead-free Solder Used in BGA Packages)

  • 이억섭;허만재;명노훈;김동혁
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2005년도 학술발표대회 논문집
    • /
    • pp.287-294
    • /
    • 2005
  • 전자 패키지가 열을 받을 때 회로기판과 칩의 열팽창계수 차이에 의해 발생되는 응력은 솔더 조인트의 파손에 영향을 미친다. 본 연구에서는 이 영향을 정량적으로 규명하기 위하여 열충격시험기를 이용해 얻어진 솔더조인트의 전기저항 변화와 수명과의 상관관계를 규명하였고, BGA 솔더조인트의 수명을 정량적으로 도출하였다. 또한 Sn-3.5Ag-0.5Cu 무연솔더와 63Sn-37Pb 유연솔더를 위의 실험에 동시에 적용시켜 건전성을 FORM(first-order reliability method)과 Weibull Function Model을 이용해 비교하였다.

  • PDF

인공타액에서 수종 아말감의 부식시 용해성분 및 표면 부식 생성물에 관한 실험적 연구 (EXPERIMENTAL STUDY ON THE DISSOLUTION COMPONENTS AND CORROSION PRODUCTS OF SEVERAL AMALGAMS IN ARTIFICIAL SALIVA)

  • 조승주;이명종
    • Restorative Dentistry and Endodontics
    • /
    • 제19권1호
    • /
    • pp.1-26
    • /
    • 1994
  • The purpose of this study was to investigate the dissolution components during corrosion of amalgams and to identify surface corrosion products in the modified Fusayama artificial saliva. Four type of amalgam alloys were used: low copper lathe cut amalgam alloy (Cavex 68), low copper spherical amalgam alloy (Caulk Spherical Alloy), high copper admixed amalgam alloy (Dispersalloy) and high copper single composition amalgam alloy (Tytin). Each amalgam alloy and Hg were triturated according to the manufacturer's direction by means of mechanical amalgamator (Capmaster, S.S.White), and then the triturated mass was inserted into the cylindrical metal mold which was 10mm in diameter and 2.0mm in height and condensed with compression of 150kg/$cm^2$ using oil pressor. The specimens were removed from the mold and stored at room temperature for 7 days and cleansed with distiled water for 30 minutes in an ultrasonic cleaner. The specimens were immersed in the modified Fusayama artificial saliva for the periods of 1 month, 3 months and 6 months. The amounts of Hg, Cu, Sn and Zn dissolved from each amalgam specimen immersed in the artificial saliva for the periods of 1 month, 3 months and 6 months were measured using Inductivity Coupled Plasma Atomic Emission Spectrometry (ICPQ-1000, Shimadzu, Japan) and amount of Ag dissolved from amalgam specimen was measured using Atomic Absorption Spectrophotometry (Atomic Absorption/Flame emission spectrophotometer M-670, Shimadzu, Japan). A surface corrosion products of specimens were analysed using Electron Spectroscopy Chemical Analyser (ESCA PHI-558, PERKIN ELMER, U.S.A.). The secondary image and back scattered image of corroded surface of specimens was observed under the SEM, and the corroded surface of specimens was analysed with the EDX. The following results were obtained. 1. The dissolution amount of Cu was the most in high copper admixed amalgam(Dispersalloy) and the least in high copper single composition amalgam(Tytin). 2. Sn and Zn were dissolved during all the experiment periods, and dissolution amounts were decreased as the time elapsed. 3. Initial surface corrosion products were ZnO and SnO. 4. Corrosion of ${\gamma}$ and ${\gamma}_2$ phase in low copper amalgams was observed and Ag-Cu eutectic alloy phase was corroded in low copper spherical amalgam(Caulk Sperical Alloy). 5. Corrosion of ${\gamma}$ and $\eta$' phase in high copper amalgams was observed and Ag-Cu eutectic alloy phase was corroded in high copper admixed amalgam(Dispersalloy). 6. Sn-Cl was produced in the subsurface of low copper amalgams and high copper admixed amalgam.

  • PDF

고속 변형률 속도에서의 무연 솔더 볼 연결부의 강도 평가 (Evaluation of the Joint Strength of Lead-free Solder Ball Joints at High Strain Rates)

  • 주세민;김택영;임웅;김호경
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.7-13
    • /
    • 2012
  • A lack of study on the dynamic tensile strengths of Sn-based solder joints at high strain rates was the motivation for the present study. A modified miniature Charpy impact testing machine instrumented with an impact sensor was built to quantitatively evaluate the dynamic impact strength of a solder joint under tensile impact loading. This study evaluated the tensile strength of lead-free solder ball joints at strain rates from $1.8{\times}10^3s^{-1}$ and $8.5{\times}10^3s^{-1}$. The maximum tensile strength of the solder ball joint decreases as the load speed increases in the testing range. This tensile strength represented that of the interface because of the interfacial fracture site. The tensile strengths of solder joints between Sn-3.0Ag-0.5Cu and copper substrate were between 21.7 MPa and 8.6 MPa in the high strain range.

레이저 공정에 따른 BGA용 solder ball의 접합 특성 (Bonding properties of BGA solder ball with laser process)

  • 김성욱;김숙환;윤병현;천창근;박재현;권영각
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.231-233
    • /
    • 2005
  • Laser have been utilized as a heat source for the soldering of electronic components for the their capability of localized heating and faster heating rate. Laser soldering process, especially the diode laser soldering of BGA solderball was investigated. In this study, an attempt was made to investigate the possibility of laser soldering using Sn-37Pb and Sn-3Ag-0.5Cu solderball. The laser energy absorbed on the pad raised the temperature of the solderball forming a reflowed solder bump. The result were discussed based on the measurement of pull and shear strength of the bond.

  • PDF

자동차 전장제품의 무연솔더 적용기술 및 솔더 접합부 열화거동 (Degradation Behavior of Solder Joint and Implementation Technology for Lead-free Automotive Electronics)

  • 홍원식;오철민
    • Journal of Welding and Joining
    • /
    • 제31권3호
    • /
    • pp.22-30
    • /
    • 2013
  • Due to ELV banning, automotive electronics cannot use four kinds of heavy metal element (Pb, Hg, Cd, $Cr^{6+}$) from 2016. Therefore, this study was focused on degradation characteristics of Sn-3.0Ag-0.5Cu Lead-free solder joint with OSP and ENIG finsh under various reliability assessment method, as like to thermal shock test and high temeprature/high humidity test with test duration for cabin electronics. Also, we compared bonding strength degradation to other advanced research results of electronic control unit for engine room because of difference service temperature with mount location in automotive. Whisker growth phenomenon and mitigation method which were essentially consideration items for Pb-free car electronics were examined. Conformal coating is a strong candidate for mitigating whisker growth in automotive electronics. Necessary condition to adapt Pb-free in car electronics was shown.

무연 솔더 접합부을 갖는 플립칩에서의 언더필 및 범프 피치 변화에 의한 열 피로 수명 예측 해석 (Simulation of Thermal Fatigue Life Prediction of Flip Chip with Lead-free Solder Joints by Variation in Bump Pitch and Underfill)

  • 김성걸;김주영
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.157-162
    • /
    • 2010
  • This paper describes the thermal fatigue life prediction models for 95.5Sn-4.0Ag-0.5Cu solder joints of Flip chip package considering Under Bump Metallurgy(UBM). A 3D Finite element slice model was used to simulate the viscoplastic behavior of the solder. For two types of solder bump pitches, simulations were analyzed and the effects of underfill packages were studied. Consequently, it was found out that solder joints with underfill had much better fatigue life than solder joints without underfill, and solder joints with $300{\mu}m$ bump pitch had a longer thermal fatigue life than solder joints with $150{\mu}m$ bump pitch. Through the simulations, flip chip with lead-free solder joints should be designed with underfill and a longer bump pitch.

Optimization of Material and Process for Fine Pitch LVSoP Technology

  • Eom, Yong-Sung;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong;Choi, Heung-Soap
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.625-631
    • /
    • 2013
  • For the formation of solder bumps with a fine pitch of 130 ${\mu}m$ on a printed circuit board substrate, low-volume solder on pad (LVSoP) technology using a maskless method is developed for SAC305 solder with a high melting temperature of $220^{\circ}C$. The solder bump maker (SBM) paste and its process are quantitatively optimized to obtain a uniform solder bump height, which is almost equal to the height of the solder resist. For an understanding of chemorheological phenomena of SBM paste, differential scanning calorimetry, viscosity measurement, and physical flowing of SBM paste are precisely characterized and observed during LVSoP processing. The average height of the solder bumps and their maximum and minimum values are 14.7 ${\mu}m$, 18.3 ${\mu}m$, and 12.0 ${\mu}m$, respectively. It is expected that maskless LVSoP technology can be effectively used for a fine-pitch interconnection of a Cu pillar in the semiconductor packaging field.

그래핀 산화 분말을 첨가한 플렉시블 기판 솔더 접합부의 반복 굽힘 신뢰성 향상 (Improving Joint Reliability of Lead-free Solder on Flexible Substrate under Cyclic Bending by Adding Graphene Oxide Powder)

  • 고용호;유동열;손준혁;방정환;김택수
    • 마이크로전자및패키징학회지
    • /
    • 제26권3호
    • /
    • pp.43-49
    • /
    • 2019
  • 본 연구에서는 그래핀 산화(graphene oxide, GO) 분말 복합 Sn-3.0Ag-0.5Cu(in wt.%) 솔더페이스트를 이용한 플렉시블 기판과 SOP(small outline package) 사이의 솔더 접합부의 굽힘 신뢰성 향상에 관한 새로운 접근을 제안하였다. 솔더페이스트에 GO의 첨가는 녹는점에 약간의 영향을 미치었으나 그 차이는 미미한 것으로 나타났다. 한편, GO의 첨가는 리플로우 공정 동안 솔더 접합부의 금속간화합물(intermetallic compound, IMC) 성장과 두께를 억제 할 수 있음을 확인하였다. 더욱이 접합부의 신뢰성에 미치는 영향을 살펴보고자 반복 굽힘 시험을 진행하였으며 GO 분말의 첨가로 솔더 접합부의 반복 굽힘 신뢰성 향상 시킬 수 있었다. 0.2 wt.%의 GO가 첨가된 솔더 접합부의 경우 GO가 첨가되지 않은 경우에 비하여 굽힘 수명은 20% 가량 증가하는 것으로 나타났다. GO가 첨가된 경우 솔더 접합부의 인장 강도와 연성이 증가하게 나타났는데 이러한 GO 첨가에 의한 기계적 특성 향상이 솔더 접합부의 반복 굽힘 신뢰성 향상에 기여한 것으로 추측된다.

자동차 엔진룸용 전장품 유무연 솔더 접합부의 열화특성 (Degradation Characteristics of Eutectic and Pb-free Solder Joint of Electronics mounted for Automotive Engine)

  • 김아영;홍원식
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.74-80
    • /
    • 2014
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from their devices and system. Especially, reliability issue of lead-free solder joint is increasing in car electronics due to ELV (End-of-Life Vehicle) banning from 2016. We have prepared engine control unit (ECU) modules soldered with Sn-40Pb and Sn-3.0Ag-0.5Cu (SAC305) solders, respectively. Degradation characteristics of solder joint strength were compared with various conditions of automobile environment such as cabin and engine room. Thermal cycle test (TC, $-40^{\circ}C$ ~ ($85^{\circ}C$ and $125^{\circ}C$), 1500 cycles) were conducted with automotive company standard. To compare shear strength degradation rate with eutectic and Pb-free solder alloy, we measured shear strength of chip components and its size from cabin and engine ECU modules. Based on the TC test results, finally, we have known the difference of degradation level with solder alloys and use environmental conditions. Solder joints degradation rate of engine room ECU is superior to cabin ECU due to large CTE (coefficient of thermal expansion) mismatch in field condition. Degradation rate of engine room ECU is 50~60% larger than cabin room electronics.