• 제목/요약/키워드: Sn-doped SnO2

검색결과 258건 처리시간 0.073초

DC마그네트론 스퍼터링법으로 PET 기판위에 저온 증착한 ITO박막의 비저항과 굽힘 저항성에 대한 RF인가의 영향 (Effect of RF Superimposed DC Magnetron Sputtering on Electrical and Bending Resistances of ITO Films Deposited on PET at Low Temperature)

  • 박미랑;이성훈;김도근;이건환;송풍근
    • 한국표면공학회지
    • /
    • 제41권5호
    • /
    • pp.214-219
    • /
    • 2008
  • Indium tin oxide (ITO) films were deposited on PET substrate by RF superimposed DC magnetron sputtering using ITO (doped with 10 wt% $SnO_2$) target. Substrate temperature was maintained below $750^{\circ}C$ without intentionally substrate heating during the deposition. The discharge voltage of DC power supply was decreased from 280 V to 100 V when superimposed RF power was increased from 0 W to 150 W. The electrical properties of the ITO films were improved with increasing of superimposed RF power. In the result of cyclic bending test, relatively high mechanical property was obtained for the ITO film deposited with RF power of 75 W under DC current of 0.75 A which could be attributed to the decrease of internal stress caused by decrease in both deposition rate and plasma impedance.

스프레이 코팅으로 제작된 유연 투명 히터용 ATO 나노입자-은 네트워크 하이브리드 투명 전극 연구

  • 김재경;신해인;김한기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.276.1-276.1
    • /
    • 2016
  • 본 연구에서는 차세대 유연 투명 히터 (Flexible and transparent heater) 제작을 위한 ATO 나노입자-은 네트워크 하이브리드 투명 전극의 특성을 연구하였다. 최적화된 은 네트워크 (Self-assembled Ag network) 투명 전극 상에 20-30 nm의 직경을 가지는 ATO (Sb-doped $SnO_2$) 나노입자를 스프레이 방식으로 상압, 상온에서 코팅하여 인쇄형 ATO-은 네트워크 하이브리드 투명 전극을 구현하였다. 스프레이로 코팅된 투명 ATO 나노 입자는 은 네트워크 전극의 빈 공간을 매워 줌으로써 은 네트워크 간의 연결성 및 표면 조도를 낮춰주어 유연 투명 히터 작동 시 전류의 집중 현상을 막아줄 수 있다. ATO-은 네트워크 하이브리드 투명 전극의 최적화를 위해 스프레이 횟수에 따른 하이브리드 투명 전극의 전기적, 광학적, 표면 특성을 분석하였으며, 최적의 조건에서 14 Ohm/square의 면저항과 66%의 투과도를 가지는 하이브리드 투명 전극을 구현하였다. 또한 FESEM 분석을 통해 ATO-은 네트워크 하이브리드 전극의 표면 및 계면 구조를 연구하고 ATO 코팅이 은 네트워크 전극의 특성에 미치는 영향을 규명하였다. 최적화된 ATO-은 네트워크 하이브리드 투명 전극을 이용하여 유연 투명 히터를 제작하고 전압에 따른 히터의 온도의 변화를 측정하여 차세대 유연 투명 히터용 투명 전극으로 인쇄기반 ATO-은 네트워크 하이브리드 투명 전극의 가능성을 확인하였다.

  • PDF

탄소나노튜브 전극의 전기화학적 특성 (Electrochemical Properties of Carbon Nano-Tube Electrode)

  • 이동윤;구보근;이원재;송재성;김현주
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권4호
    • /
    • pp.139-143
    • /
    • 2005
  • For application of carbon nano-tube (CNT) as a counter electrode materials of dye-sensitized solar cell (DSSC), the electrochemical behavior of CNT electrode was studied, employing cyclic-voltammetry (C-V) and impedance spectroscopy. Fabrication of CNT-paste and formation of CNT-counter electrode for characteristic measurement have been carried out using ball-milling and doctor blade process, respectively. Unit cell for measurements was assembled using Pt electrode, CNT electrode, and iodine-embedded electrolyte. Field emission-scanning electron microscopy (FE-SEM) was used for structural investigation of CNT powder and electrode. Sheet resistance of electrode was measured with 4-point probe method. Electrochemical properties of electrode, C-V and impedance spectrum, were studied, employing potentiogalvanostat (EG&G 273A) and lock in amplifier (EG&G 5210). As a results, the sheet resistance of CNT electrode is almost similar to that of F-doped SnO2 (FTO) coated glass substrate as approximately 10 ohm/sq. From C-V and impedance spectroscopy measurements, it was found that CNT electrode has high reaction rate and low interface reaction resistance between CNT surface and electrolyte. These results provides that CNT electrode were superior to that of conventional Pt electrode. Particularly, the reaction rate in the CNT electrode is about thrice high than Pt electrode. Therefore. CNT electrode is to be good candidate material for counter electrode in DSSC.

이온빔 스퍼터링법에 의한 ATO박막의 저온 증착 특성 (Low Temperature Deposition and Characteristics of ATO Thin Films by Ion Beam Sputtering)

  • 구창영;이희영;홍민기;김경중;김광호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.307-310
    • /
    • 2000
  • Antimony doped tin oxide (ATO) thin films were deposited at room temperature by ion-beam sputter deposition (IBSD) technique in oxidizing atmosphere utilizing Sb and Sn metal targets. Effect of Sb doping concentration, film thickness and heat treatment on electrical and optical properties was investigated. The thickness of as-deposited films was controlled approximately to $1500{\AA}$ or $2000{\AA}$, and Sb concentration to 10.8 and 14.9 wt%, as determined by SEM and XPS analyses. Heat treatment was performed at the temperature from $400^{\circ}C$ to $600^{\circ}C$ in flowing $O_2$ or forming gas. The resulting ATO films showed widely changing electrical resistivity and optical transmittance values in the visible spectrum depending on the composition, thickness and firing condition.

  • PDF

DC Magnetron Sputtering 법에 의해 ATO 박막 제조시 스퍼터전력 및 산소유량이 전기적 성질에 미치는 영향 (Effects of Sputtering Power and Oxygen Flow Rate on the Electrical Properties of ATO Thin Films Made by DC Magnetron Sputtering)

  • 이환수;이혜용;윤천
    • 한국재료학회지
    • /
    • 제9권5호
    • /
    • pp.533-537
    • /
    • 1999
  • ATO(Sb doped $SnO_2$) thin films whose thicknesses were 600, 1100 and $2100\AA$ were prepared by DC magnetron sputtering method. They showed the lowest resistivity at DC sputtering power 0.24kW and had lower resistivity with increasing thickness. The power dependence of resistivity among ATO thin films was also different with thickness. The increase of carrier concentration in ATO thin films was responsible for the decrease of resistivity with thickness increase. ATO thin films which were prepared at 30sccm oxygen flow rate showed a great change of sheet resistance under 1M HCl solution. The investigation of SAM(Scanning Auger Microprobe) revealed that oxygen atomic percentage on the surface of ATO thin films was changed. The decrease of sheet resistance also occurred when ATO thin films, prepared at 30sccm oxygen flow rate, were exposed to air for a long period of time. For this reason, it was considered that the desorption of oxygen on ATO surface was accelerated by HCl.

  • PDF

Effect of Ni Interlayer on the Methanol Gas Sensitivity of ITO Thin Films

  • Lee, Y.J.;Huh, S.B.;Lee, H.M.;Shin, C.H.;Jeong, C.W.;Chae, J.H.;Kim, Y.S.;Kim, Daeil
    • 열처리공학회지
    • /
    • 제23권5호
    • /
    • pp.245-248
    • /
    • 2010
  • Sn doped $In_2O_3$ (ITO) and ITO/Ni/ITO (INI) multilayer films were deposited on the glass substrates with a reactive magnetron sputtering system without intentional substrate heating and then the influence of the Ni interlayer on the methanol gas sensitivity of ITO and INI film sensors were investigated. Although both ITO and INI film sensors have the same thickness of 100 nm, INI sensors have a sandwich structure of ITO 50 nm/Ni 5 nm/ITO 45 nm. The changes in the gas sensitivity of the film sensors caused by methanol gas ranging from 100 to 1000 ppm were measured. It is observed that the INI film sensors show the higher sensitivity than that of the ITO single layer sensors. Finally, it can be concluded that the INI film sensor have the potential to be used as improved methanol gas sensors.

회전 원통형 스퍼터링 공법으로 하여 성막한 ITO투명 전극의 두께에 따른 전기적, 광학적, 구조적 특성 연구

  • ;박강일;안경준;김한기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.326-326
    • /
    • 2013
  • 본 연구에서는 회전 원통형 마그네트론 스퍼터링 시스템(Cylindrical Magnetron Sputtering)을 이용하여 성막한 Sn-doped $In_2O_3$ (ITO) 투명전극의 두께 변화에 따른 전기적, 광학적, 구조적 특성을 연구하였다. 회전 원통형 마그네트론 스퍼터링 시스템을 이용한 ITO 투명전극은 박막의 두께가 50~1,000 nm의 두께로 증가함에 따라 비저항 값은 일정하게 유지되나 면저항 값이 $37.8{\Omega}$/square로부터 $1.5{\Omega}$/square로 점차적으로 감소됨을 확인할 수 있었다. 또한 ITO 박막의 두께 증가가 50 nm에서 1,000 nm로 증가함에 따라 400~800nm 파장 범위에서 71~83%의 높은 광투과도를 나타내었다. 두께 변화에 따른 광학적 특성 변화를 설명하기 위해 Spectroscopic ellipsometry 분석을 실시하였으며 이를 기반으로 박막 두께와 투과도의 상관관계를 설명하였다. 한편, 원통형 마그네트론 스퍼터로 성장시킨 ITO 박막은 두께가 50~200 nm의 범위에서는 (222) 방향으로 우월 성장하였으나, 200-1000 nm 두께 범위에서는 우월 성장방향이 (400)과 (622)로 바뀜을 X-ray diffraction (XRD) 분석을 통하여 확인하였다. 이를 통해 박막의 두께변화에 따른 전기적/광학적 특성의 변화는 박막의 구조와 매우 밀접한 상관관계가 있음을 알 수 있었다.

  • PDF

Deposition of Indium Tin Oxide films on Polycarbonate substrates by Ion-Assisted deposition (IAD)

  • Cho, Jn-sik;Han, Young-Gun;Park, Sung-Chang;Yoon, Ki-Hyun;Koh, Seok-Keun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.98-98
    • /
    • 1999
  • Highly transparent and conducting tin-doped indium oxide (ITO) films were deposited on polycarbonate substrate by ion-assited deposition. Low substrate temperature (<10$0^{\circ}C$) was maintained during deposition to prevent the polycarbonate substrate from be deformed. The influence of ion beam energy, ion current density, and tin doping, on the structural, electrical and optical properties of deposited films was investigated. Indium oxide and tin-doped indium oxide (9 wt% SnO2) sources were evaporated with assisting ionized oxygen in high vacuum chamber at a pressure of 2$\times$10-5 torr and deposition temperature was varied from room temperature to 10$0^{\circ}C$. Oxygen gas was ionized and accelerated by cold hallow-cathode type ion gun at oxygen flow rate of 1 sccm(ml/min). Ion bea potential and ion current of oxygen ions was changed from 0 to 700 V and from 0.54 to 1.62 $\mu$A. The change of microstructure of deposited films was examined by XRD and SEM. The electrical resistivity and optical transmittance were measured by four-point porbe and conventional spectrophotometer. From the results of spectrophotometer, both the refractive index and the extinction coefficient were derived.

  • PDF

Effect of Annealing Temperature on the Properties of ITO/Au/ITO Films

  • Chae, Joo-Hyun;Kim, Dae-Il
    • 한국재료학회지
    • /
    • 제19권2호
    • /
    • pp.108-110
    • /
    • 2009
  • Transparent Sn-doped $In_2O_3$ (ITO) single-layer and ITO/Au/ITO multilayer films were deposited on glass substrates by reactive magnetron sputtering to compare the properties of the films. They were then annealed in a vacuum of $1{\times}10^{-2}\;Pa$ at temperatures ranging from 150 to $450^{\circ}C$ for 20 min to determine the effect of the annealing temperature on the properties of the films. As-deposited 100 nm thick ITO films exhibit a sheet resistance of $130{\Omega}/{\square}$ and optical transmittance of 77% at a wavelength length of 550 nm. By inserting a 5 nm-thick Au layer in ITO/metal/ITO (IMI) films, the sheet resistance was decreased to as low as $20{\Omega}/{\square}$ and the optical transmittance was decreased to as little as 73% at 550 nm. Post-deposition annealing of ITO/Au/ITO films led to considerably lower electrical resistivity and higher optical transparency. In the Xray diffraction pattern, as-deposited ITO films did not show any diffraction peak, whereas as-deposited ITO/ Au/ITO films have Au (222) and $In_2O_3$ (110) crystal planes. When the annealing temperature reached the 150 - $450^{\circ}C$ range, the both diffraction peak intensities increased significantly. A sheet resistance of $8{\Omega}/{\square}$ and an optical transmittance of 82% were obtained from the ITO/Au/ITO films annealed at $450^{\circ}C$.

RF 스퍼터와 전자빔 조사를 이용한 ITO/Au/ITO 가스센서 제조 및 특성 평가 (Fabrication and Characterization of the ITO/Au/ITO Thin Film Gas Sensor by RF Magnetron Sputtering and electron Irradiation)

  • 허성보;이학민;김유성;채주현;유용주;김대일
    • 열처리공학회지
    • /
    • 제24권2호
    • /
    • pp.87-91
    • /
    • 2011
  • Single layer Sn doped $In_2O_3$ (ITO) films and ITO 50 nm / Au 10 nm / ITO 40 nm (IAI) multilayer films were prepared with electron beam assisted magnetron sputtering on glass substrates. The effects of the Au interlayer, post-deposition atmosphere annealing and intense electron irradiation on the methanol gas sensitivity were investigated at room temperature. As deposited ITO films did not show any diffraction peaks in the XRD pattern, while the IAI films showed the diffraction peak for $In_2O_3$ (400). In this study, the gas sensitivity of ITO and IAI films increased proportionally with the methanol vapor concentration and an intense electron beam irradiated IAI film shows the higher sensitivity than the others film. From the XRD pattern, it is supposed that increased crystallization promotes the gas sensitivity. This approach is promising in gaining improvement in the performance of IAI gas sensors used for the detection of methanol vapor at room temperature.