• Title/Summary/Keyword: Sn-3.0Ag-0.5Cu solder

Search Result 185, Processing Time 0.024 seconds

Correlation between Interfacial Reaction and Brittle Fracture Found in Electroless Ni(P) Metallization (계면 화학반응과 무전해 니켈 금속층에서 나타나는 취성파괴와의 연관성에 관한 연구)

  • Sohn Yoon-Chul;Yu Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.41-46
    • /
    • 2005
  • A systematic investigation of shear testing was conducted to find a relationship between Ni-Sn intermetallic spatting and the brittle fracture observed in electroless Ni(P)/solder interconnection. Brittle fracture was found in the solder joints made of Sn-3.5Ag, while only ductile fracture was observed in a Cu-containing solder (Sn-3.0Ag-0.5Cu). For Sn-3.0Ag-0.5Cu joints, $(Ni,Cu)_3Sn_4$ and/or $(Cu,Ni)_6Sn_5$ compound were formed at the interface without spatting from the Ni(P) film. For Sn-3.5Ag, $Ni_3Sn_4$ compound was formed and brittle fracture occurred in solder pads where $Ni_3Sn_4$ had spalled. From the analysis of fractured surfaces, it was found that the brittle fracture occurs through the $Ni_3SnP$ layer formed between $Ni_3Sn_4$ intermetallic layer and the Ni(P) film. Since the $Ni_3SnP$ layer is getting thicker during/ after $Ni_3Sn_4$ spatting, suppression of $Ni_3Sn_4$ spatting is crucial to ensure the reliability of Ni(P)/solder system.

  • PDF

The Interfacial Reactions and Reliability of SnAgCu Solder Joints under Thermal Shock Cycles (열충격 사이클에 따른 SnAgCu 솔더별 솔더 접합부의 신뢰성 및 계면반응)

  • Oh, Chulmin;Park, Nochang;Han, Changwoon;Bang, Mansoo;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.500-507
    • /
    • 2009
  • Pb-free solder has recently been used in electronics in efforts to meet environmental regulations, and a number of Pb-free solder alloy choices beyond the near-eutectic SnAgCu solder are now available. With increased demand for thin and portable electronics, the high cost of alloys containing significant amounts of silver and their poor mechanical shock performance have spurred the development of low Ag SnAgCu solder, which provides improved mechanical performance at a reasonable cost. Although low Ag SnAgCu solder exhibits significantly higher fracture resistance under high-strain rates, little thermal fatigue data exist for this solder. Therefore, it is necessary to investigate thermal fatigue reliability of low Ag SnAgCu solder under variation of thermal stress in order to allow its implementation in electronic products with high reliability requirements. In this study, the reliability of Sn0.3Ag0.7Cu(SAC0307), a low Ag solder alloy, is discussed and compared with that of Sn3Ag0.5Cu(SAC305). Three sample types and six samples size are evaluated. Mechanical properties and microstructure of the solder joint are investigated under thermal shock cycles. It was observed that the mechanical strength of SAC0307 dropped slightly with thermal cycling relative to that of SAC305. This reveals that the failure mode of SAC0307 is different from that SAC305 under this critical condition.

Effects of Graphene Oxide Addition on the Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints (Graphene Oxide 첨가에 따른 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 Electromigration 특성 분석)

  • Son, Kirak;Kim, Gahui;Ko, Yong-Ho;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.81-88
    • /
    • 2019
  • In this study, the effects of graphene oxide (GO) addition on electromigration (EM) lifetime of Sn-3.0Ag-0.5Cu Pb-free solder joint between a ball grid array (BGA) package and printed circuit board (PCB) were investigated. After as-bonded, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) was formed at the interface of package side finished with electroplated Ni/Au, while $Cu_6Sn_5$ IMC was formed at the interface of OSP-treated PCB side. Mean time to failure of solder joint without GO solder joint under $130^{\circ}C$ with a current density of $1.0{\times}10^3A/cm^2$ was 189.9 hrs and that with GO was 367.1 hrs. EM open failure was occurred at the interface of PCB side with smaller pad diameter than that of package side due to Cu consumption by electrons flow. Meanwhile, we observed that the added GO was distributed at the interface between $Cu_6Sn_5$ IMC and solder. Therefore, we assumed that EM reliability of solder joint with GO was superior to that of without GO by suppressing the Cu diffusion at current crowding regions.

Effect of Cooling Rates in Post-Soldering of Sn-Ag-Cu Lead-free Solder Joints (솔더링 후의 냉각속도가 Sn-Ag-Cu 무연솔더 접합계면 특성에 미치는 영향)

  • 정상원;이혁모
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.110-113
    • /
    • 2003
  • 여러가지 Sn-Ag-Cu 솔더조성과 솔더링 후의 냉각속도에 따라 솔더링 접합부에서의 계면 미세조직의 다양한 변화를 관찰해 보았다. 현재까지 Sn-Ag-Cu 3원계 공정점에 대한 정확한 연구가 미흡하고, 상용으로 제품화되고 있는 Sn-Ag-Cu 합금계는 3원계 공정조성에서 약간 벗어난 조성들을 선택하고 있다고 할 수 있다. 따라서, 본 연구에서 사용한 Sn-Ag-Cu 합금 조성은 Sn-3.5Ag, Sn-3Ag-0.7Cu, Sn-3Ag-1.5Cu, Sn-3.7Ag-0.9Cu, Sn-6Ag-0.5Cu로 선택하였으며, 각 조성에서 Lap Shear Joint를 제조하였다. 사용한 Solder pad는 Cu pad와 Cu pad 위에 Au/Ni를 plating한 것을 이용하였다. 리플로우 솔더링 조건은 $250^{\circ}C$ 이상의 온도에서 60초 실시하였으며, 리플로우 솔더링 후의 냉각속도를 달리하여 냉각시켰다. 솔더링 후의 냉각속도가 느려질수록 계면 금속간화합물(IMC)의 두께가 더욱 증가하며, 조대화되었다. 또한 솔더 조성의 영향에서 Cu와 Ag의 함량이 높을수록 계면 IMC의 두께가 증가되었으며, 이는 솔더내부에 형성된 IMC 입자들이 조대화되어 계면 IMC층에 결합되어 나타났기 때문이다.

  • PDF

Studies on the Interfacial Reaction of Screen-Printed Sn-37Pb, Sn-3.5Ag and Sn-3.8Ag-0.7Cu Solder Bumps on Ni/Au and OSP finished PCB (Ni/Au 및 OSP로 Finish 처리한 PCB 위에 스크린 프린트 방법으로 형성한 Sn-37Pb, Sn-3.5Ag 및 Sn-3.8Ag-0.7Cu 솔더 범프 계면 반응에 관한 연구)

  • Nah, Hae-Woong;Son, Ho-Young;Paik, Kyung-Wook;Kim, Won-Hoe;Hur, Ki-Rok
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.750-760
    • /
    • 2002
  • In this study, three solders, Sn-37Pb, Sn-3.5Ag, and Sn-3.8Ag-0.7Cu were screen printed on both electroless Ni/Au and OSP metal finished micro-via PCBs (Printed Circuit Boards). The interfacial reaction between PCB metal pad finish materials and solder materials, and its effects on the solder bump joint mechanical reliability were investigated. The lead free solders formed a large amount of intermetallic compounds (IMC) than Sn-37Pb on both electroless Ni/Au and OSP (Organic Solderabilty Preservatives) finished PCBs during solder reflows because of the higher Sn content and higher reflow temperature. For OSP finish, scallop-like $Cu_{6}$ /$Sn_{5}$ and planar $Cu_3$Sn intermetallic compounds (IMC) were formed, and fracture occurred 100% within the solder regardless of reflow numbers and solder materials. Bump shear strength of lead free solders showed higher value than that of Sn-37Pb solder, because lead free solders are usually harder than eutectic Sn-37Pb solder. For Ni/Au finish, polygonal shaped $Ni_3$$Sn_4$ IMC and P-rich Ni layer were formed, and a brittle fracture at the Ni-Sn IMC layer or the interface between Ni-Sn intermetallic and P-rich Ni layer was observed after several reflows. Therefore, bump shear strength values of the Ni/Au finish are relatively lower than those of OSP finish. Especially, spalled IMCs at Sn-3.5Ag interface was observed after several reflow times. And, for the Sn-3.8Ag-0.7Cu solder case, the ternary Sn-Ni-Cu IMCs were observed. As a result, it was found that OSP finished PCB was a better choice for solders on PCB in terms of flip chip mechanical reliability.

Study on Thermal Stability of the Interface between Electroless Ni-W-P Deposits and BGA Lead-Free Solder (Sn-3.0Ag-0.5Cu) (BGA 무연솔더(Sn-3.0Ag-0.5Cu)와 무전해 Ni-W-P 도금층 계면의 열 안정성에 대한 연구)

  • Shin, Dong-Hee;Cho, Jin-Ki;Kang, Seung-Goon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • In this study, we investigated the morphology and thermal stability of interfacial phases in joint between lead free solder(Sn-3.0Ag-0.5Cu) and electroless Ni-W-P under bump metallizations(UBM) with different tungsten contents as a function of thermal aging. Content of phosphorus of each deposits was fixed at 8 wt.%, and content of tungsten was variated each 0, 3, 6 and 9 wt.%. Specimens were prepared by reflowing at $255^{\circ}C$, aging range was $200^{\circ}C$ and up to 2 weeks. After reflow process, in the electroless Ni(W)-P/solder joint, the interfacial intermetallic compound(IMC) was showed both $(Cu,Ni)_6Sn_5$ and $(Ni,Cu)_3Sn_4$. UBM and generated IMC at the interface of lead free solder was proportionally increased with aging time. The thickness of IMC was increased because the generation rate of $Ni(W)_3P$ decreased with increasing contents of W.

DEVELOPMENT OF SN BASED MULTI COMPONENT SOLDER BALLS WITH CD CORE FOR BGA PACKAGE

  • Sakatani, Shigeaki;Kohara, Yasuhiro;Uenishi, Keisuke;Kobayashi, Kojiro F.;Yamamoto, Masaharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.450-455
    • /
    • 2002
  • Cu-cored Sn-Ag solder balls were fabricated by coating pure Sn and Ag on Cu balls. The melting behavior and the solderability of the BGA joint with the Ni/Au coated Cu pad were investigated and were compared with those of the commercial Sn-Ag and Sn-Ag-Cu balls. DSC analyses clarified the melting of Cu-cored solders to start at a rather low temperature, the eutectic temperature of Sn-Ag-Cu. It was ascribed to the diffusion of Cu and Ag into Sn plating during the heating process. After reflow soldering the microstructures of the solder and of the interfacial layer between the solder and the Cu pad were analyzed with SEM and EPMA. By EDX analysis, formation of a eutectic microstructure composing of $\beta$-Sn, Ag$_3$Sn, ad Cu$_{6}$Sn$_{5}$ phases was confirmed in the solder, and the η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer was found to form at the interface between the solder and the Cu pad. By conducting shear tests, it was found that the BGA joint using Cu-cored solder ball could prevent the degradation of joint strength during aging at 423K because of the slower growth me of η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer formed at the solder, pad interface. Furthermore, Cu-cored multi-component Sn-Ag-Bi balls were fabricated by sequentially coating the binary Sn-Ag and Sn-Bi solders on Cu balls. The reflow property of these solder balls was investigated. Melting of these solder balls was clarified to start at the almost same temperature as that of Sn-2Ag-0.75Cu-3Bi solder. A microstructure composing of (Sn), Ag$_3$Sn, Bi and Cu$_{6}$Sn$_{5}$ phases was found to form in the solder ball, and a reaction layer containing primarily η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ was found at the interface with Ni/Au coated Cu pad after reflow soldering. By conducting shear test, it was found that the BGA joints using this Cu-core solder balls hardly degraded their joint shear strength during aging at 423K due to the slower growth rate of the η'-(Au, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer at the solder/pad interface.he solder/pad interface.

  • PDF

The Wetting Property of Sn-3.5Ag Eutectic Solder (Sn-3.5Ag 공정 솔더의 젖음특성)

  • 윤정원;이창배;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.91-96
    • /
    • 2002
  • Three different kinds of substrate used in this study : bare Cu, electroless Ni/Cu substrate with a Nilayer thickness of $5\mu\textrm{m}$, immersion Au/electroless Ni/Cu substrate with the Au and Ni layer of $0.15\mu\textrm{m}$ and $5\mu\textrm{m}$ thickness, respectively. The wettability and interfacial tension between various substrate and Sn-3.5Ag solder were examined as a function of soldering temperature, types of flux. The wettability of Sn-3.5Ag solder increased with soldering temperature and solid content of flux. The wettability of Sn-3.5Ag solder was affected by the substrate metal finish used, i.e., nickel, gold and copper. Intermetallic compound formation between liquid solder and substrate reduced the interfacial energy and decreased wettability.

Effects of PCB Surface Finishes on in-situ Intermetallics Growth and Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints (PCB 표면처리에 따른 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 in-situ 금속간 화합물 성장 및 Electromigration 특성 분석)

  • Kim, Sung-Hyuk;Park, Gyu-Tae;Lee, Byeong-Rok;Kim, Jae-Myeong;Yoo, Sehoon;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • The effects of electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) surface finishes on the in-situ intermetallics reaction and the electromigration (EM) reliability of Sn-3.0Ag-0.5Cu (SAC305) solder bump were systematically investigated. After as-bonded, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) was formed at the interface of the ENIG surface finish at solder top side, while at the OSP surface finish at solder bottom side,$ Cu_6Sn_5$ and $Cu_3Sn$ IMCs were formed. Mean time to failure on SAC305 solder bump at $130^{\circ}C$ with a current density of $5.0{\times}10^3A/cm^2$ was 78.7 hrs. EM open failure was observed at bottom OSP surface finish by fast consumption of Cu atoms when electrons flow from bottom Cu substrate to solder. In-situ scanning electron microscope analysis showed that IMC growth rate of ENIG surface finish was much lower than that of the OSP surface finish. Therefore, EM reliability of ENIG surface finish was higher than that of OSP surface finish due to its superior barrier stability to IMC reaction.