• Title/Summary/Keyword: Smoothening

Search Result 27, Processing Time 0.025 seconds

Improved LVRT Capability and Power Smoothening of DFIG Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.568-575
    • /
    • 2011
  • This paper proposes an application of energy storage devices (ESD) for low-voltage ride-through (LVRT) capability enhancement and power smoothening of doubly-fed induction generator (DFIG) wind turbine systems. A grid-side converter (GSC) is used to maintain the DC-link voltage. Meanwhile, a machine-side converter (MSC) is used to control the active and reactive powers independently. For grid disturbances, the generator output power can be reduced by increasing the generator speed, resulting in an increased inertial energy of the rotational body. Design and control techniques for the energy storage devices are introduced, which consist of current and power control loops. Also, the output power fluctuation of the generator due to wind speed variations can be smoothened by controlling the ESD. The validity of the proposed method has been verified by PSCAD/EMTDC simulation results for a 2 MW DFIG wind turbine system and by experimental results for a small-scale wind turbine simulator.

A Cartographic Generalization for Correcting Spatial Errors of Linear Features (지도제작에 따른 선형사상의 공간적 오류 개선을 위한 일반화)

  • Kim, Nam Shin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.39-51
    • /
    • 2004
  • This study aims to suggest new algorithm, named as Simoo, in order to improve spatial conflicts and vector displacement between linear features in generalization of the linear features. Main principles of Simoo algorithm is adoption of simplification and smoothening methods. Tolerance conditions used in Simoo are perpendicular length, external angle, and average vertex length. Main characteristics of Simoo are the application of scale, cartographic refinement, minimization of logical errors, and maintenance of geographical properties. The Simoo was applied through comparison to existing Douglas-Peucker algorithm. Resultantly, maintenance ratios of line such as coastal line and stream network were over 97% in both algorithms. The elimination ratio of vertex points may be more effective in Douglas-Peucker than in Simoo. Spatial conflicts between linear features may be more minimized in Simoo. The curvature and smoothening of lines become decreased in scale in application of Simoo. Finally, Simoo algorithm may be more effective than Douglas-Peucker for cartographic generalization.

  • PDF

Power Smoothening Control of Wind Farms Based on Inertial Effect of Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Kang, Jong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1096-1103
    • /
    • 2014
  • This paper proposes a novel strategy for attenuating the output power fluctuation of the wind farm (WF) in a range of tens of seconds delivered to the grid, where the kinetic energy caused by the large inertia of the wind turbine systems is utilized. A control scheme of the two-level structure is applied to control the wind farm, which consists of a supervisory control of the wind farm and individual wind turbine controls. The supervisory control generates the output power reference of the wind farm, which is filtered out from the available power extracted from the wind by a low-pass filter (LPF). A lead-lag compensator is used for compensating for the phase delay of the output power reference compared with the available power. By this control strategy, when the reference power is lower than the maximum available power, some of individual wind turbines are operated in the storing mode of the kinetic energy by increasing the turbine speeds. Then, these individual wind turbines release the kinetic power by reducing the turbine speed, when the power command is higher than the available power. In addition, the pitch angle control systems of the wind turbines are also employed to limit the turbine speed not higher than the limitation value during the storing mode of kinetic energy. For coordinating the de-rated operation of the WT and the storing or releasing modes of the kinetic energy, the output power fluctuations are reduced by about 20%. The PSCAD/EMTDC simulations have been carried out for a 10-MW wind farm equipped with the permanent-magnet synchronous generator (PMSG) to verify the validity of the proposed method.

On-line Failure Detection Method of DC Output Filter Capacitor in Power Converters (전력변환장치에서의 DC 출력 필터 커패시터의 온라인 고장 검출기법)

  • Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.483-489
    • /
    • 2009
  • Electrolytic capacitors are used in variety of equipments as smoothening element of the power converters because it has high capacitance for its size and low price. Electrolytic capacitors, which is most of the time affected by aging effect, plays a very important role for the power electronics system quality and reliability. Therefore it is important to estimate the parameter of an electrolytic capacitor to predict the failure. This objective of this paper is to propose a new method to detect the rise of equivalent series resistor(ESR) in order to realize the online failure prediction of electrolytic capacitor for DC output filter of power converter. The ESR of electrolytic capacitor estimated from RMS result of filtered waveform(BPF) of the ripple capacitor voltage/current. Therefore, the preposed online failure prediction method has the merits of easy ESR computation and circuit simplicity. Simulation and experimental results are shown to verify the performance of the proposed on-line method.

Numerical analysis of propagation of macrocracks in 3D concrete structures affected by ASR

  • Moallemi, S.;Pietruszczak, S.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • In this study an implicit algorithm for modeling of propagation of macrocracks in 3D concrete structures suffering from alkali-silica reaction has been developed and implemented. The formulation of the problem prior to the onset of localized deformation is based on a chemo-elasticity approach. The localized deformation mode, involving the formation of macrocracks, is described using a simplified form of the strong discontinuity approach (SDA) that employs a volume averaging technique enhanced by a numerical procedure for tracing the propagation path in 3D space. The latter incorporates a non-local smoothening algorithm. The formulation is illustrated by a number of numerical examples that examine the crack propagation pattern in both plain and reinforced concrete under different loading scenarios.

Flicker Suppression Scheme for Variable-Speed Wind Turbine Systems

  • Van, Tan Luong;Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.333-343
    • /
    • 2012
  • This paper proposes a strategy of flicker mitigation for doubly-fed induction generator (DFIG) wind turbine systems. In the weak grid system where the grid impedance ratio is low, the reactive power compensation only cannot suppress the flicker sufficiently due to the limited power capacity of the converters or the DFIG. For the full suppression of flickers, the active power smoothening using the energy storage system (ESS) needs to be utilized together with the reactive power compensation. The effectiveness of the proposed method is verified by PSCAD/EMTDC simulation results for a 2[MW] DFIG wind turbine system and by experimental results for a 3[kW] wind turbine simulator.

Ride-Through Technique for PMSG Wind Turbines using Energy Storage Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.733-738
    • /
    • 2010
  • This paper deals with a ride-through technique for permanent-magnet synchronous generator (PMSG) wind turbine systems using energy storage systems (ESS). A control strategy which consists of current and power control loops for the energy storage systems is proposed. By increasing the generator speed, some portion of the turbine power can be stored in the system inertia. Therefore, the required energy capacity of the ESS can be decreased, which results in a low-cost system. In addition, the power fluctuations due to wind speed variations can be smoothened by controlling the ESS appropriately. The effectiveness of the proposed method is verified not only by the simulation results for a 2[MW] PMSG wind turbine system, but also by the experiment results for a reduced-scale turbine simulator.

Evolution of surface morphology and roughness in Si and $_{0.7}$Ge$_{0.3}$ thin fimls (Si 및Si$_{0.7}$Ge$_{0.3}$ 박막의 표현형태 및 조도의 전개)

  • 이내웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.345-358
    • /
    • 1998
  • The evolution of surface roughness and morphology in epitaxial Si and $Si_{0.7}Ge{0.3}$ alloys grown by UHV opm-beam sputter deposition onto nominally-singular, [100]-, and [110]-mi-scut Si(001) was investigated by stomic force microscopy and trasmission electron microscopy. The evolution of surface roughness of epitaxial Si films grown at $300^{\circ}C$ is inconsistent with conventional scaling and hyperscaling laws for kineti roughening. Unstable growth leading to the formation of mounds separated by a well-defined length scale is observed on all substrates. Contraty to previous high-temperature growth results, the presence of steps during deposition at $300^{\circ}C$ increases the tendency toward unstable growth resulting in a much earlier development of mound structures and larger surface roughnesses on vicival substrates. Strain-induced surface roughening was found to dominate in $Si_{0.7}Ge{0.3}$ alloys grown on singular Si(001) substrates at $T_S\ge450^{\circ}C$ where the coherent islands are prererentially bounded along <100> directions and eshibt {105} facetting. Increasing the film thickness above critical values for strain relaxation leads to island coalescence and surface smoothening. At very low growth temperatures ($T_s\le 250^{\circ}C$), film surfaces roughen kinetically, due to limited adatom diffusiviry, but at far lower rates than in the higher-temperature strain-induced regime. There is an intermediate growth temperature range, however, over which alloy film surfaces remain extremely smooth even at thicknesses near critical values for strain relaxation.

  • PDF

Analytical Study on Strength Resistance of Steel Beams with Stiffened Ends by Reinforced Concrete -difference of behavior with fixing plate- (복합보의 내력성능에 관한 연구 -정착판의 설치에 의한 거동의 차이-)

  • Kim, Seong Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.681-690
    • /
    • 2000
  • Recently, a long span is often required for the spacious building. Therefore the increase of stiffness is necessary to prevent floor vibration and control deformation of the building under earthquake and wind loads. For this purpose, steel beams with stiffened ends by reinforced concrete are effective. To realize such an effective reinforcement method, the smoothening of bending and shear stress transmission at the boundaries between middle-part of the steel beam and both end-parts of the steel beam with stiffened ends by reinforced concrete is required. Therefore, the fixed plate was installed at the boundary with the view of transferring the stress smoothly. This paper evaluates the method of effective transmission of bending and shear stress through the numerical analysis that is based on advanced experimental tests.

  • PDF

Optimization of 3D Triangular Mesh Watermarking Using ACO-Weber's Law

  • Narendra, Modigari;Valarmathi, M.L.;Anbarasi, L.Jani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4042-4059
    • /
    • 2020
  • The development of new multimedia techniques such as 3D printing is increasingly attracting the public's attention towards 3D objects. An optimized robust and imperceptible watermarking method based on Ant Colony Optimization (ACO) and Weber Law is proposed for 3D polygonal models. The proposed approach partitions the host model into smaller sub meshes and generates a secret watermark from the sub meshes using Weber Law. ACO based optimized strength factor is identified for embedding the watermark. The secret watermark is embedded and extracted on the wavelet domain. The proposed scheme is robust against geometric and photometric attacks that overcomes the synchronization problem and authenticates the secret watermark from the distorted models. The primary characteristic of the proposed system is the flexibility achieved in data embedding capacity due to the optimized strength factor. Extensive simulation results shows enhanced performance of the recommended framework and robustness towards the most common attacks like geometric transformations, noise, cropping, mesh smoothening, and the combination of such attacks.