• 제목/요약/키워드: Smooth Thickness

검색결과 248건 처리시간 0.025초

Linear regression analysis for factors influencing displacement of high-filled embankment slopes

  • Zhang, Guangcheng;Tan, Jiansong;Zhang, Lu;Xiang, Yong
    • Geomechanics and Engineering
    • /
    • 제8권4호
    • /
    • pp.511-521
    • /
    • 2015
  • It is a common failure type that high-filled embankment slope sideslips. The deformation mechanism and factors influencing the sideslip of embankment slope is the key to reduce the probability of this kind of engineering disaster. Taking Liujiawan high-filled embankment slope as an example, the deformation and failure characteristics of embankment slope and sheet-pile wall are studied, and the factors influencing instability are analyzed, then the correlation of deformation rate of the anti-slide plies and each factor is calculated with multivariate linear regression analysis. The result shows that: (1) The length of anchoring segment is not long enough, and displacement direction of embankment and retaining structure are perpendicular to the trend of the highway; (2) The length of the cantilever segment is so large that the active earth pressures behind the piles are very large. Additionally, the surface drainage is not smooth, which leads to form a potential sliding zone between bottom of the backfill and the primary surface; (3) The thickness of the backfill and the length of the anti-slide pile cantilever segment have positive correlation with the deformation whereas the thickness of anti-slide pile through mudstone has a negative correlation with the deformation. On the other hand the surface water is a little disadvantage on the embankment stability.

Scanning Electron Microscopic Study on the Head Lice Eggs Detected in Korean Children

  • Park, Mi Soon;Chang, Byung Soo
    • Applied Microscopy
    • /
    • 제44권2호
    • /
    • pp.47-52
    • /
    • 2014
  • Fine structural characteristics of eggs (nits) found on the scalp hairs of Korean children were observed with scanning electron microscopy. An egg is structurally composed of four parts: the cementum, nit body, operculum, and aerophyle. The total length of an egg is about 1.5 mm. The glue secreted from the female louse completely surrounds the 1 mm hair shaft and forms the cementum. The thickness of the cementum at the end of the nit body was found to be more than 5 times the thickness at the end toward the scalp. The nit body is shaped like a goblet with a very smooth surface. The operculum and aerophyles are located at the apiculus area. In the circular operculum, there are 10 aerophyles concentrated on the side of the hair shaft surface that are shaped like a dome. Three aerophyles in the center are surrounded by 7 aerophyles. Each aerophyle is dome shaped with a diameter of $65{\mu}m$ and a respiratory pathway with a $15{\sim}25{\mu}m$ opening at the center. On the cut surface where the operculum is separated as the egg hatches, long grooves about $1{\mu}m$ thick are uniformly formed transversely. These long grooves facilitate the separation of the operculum through body expansion at the time of hatching.

수소 환원기체와 (hfac)Cu(3,3-dimethyl-1-butene) 증착원을 이용한 Pulsed MOCVD로 Cu seed layer 증착 특성에 미치는 영향에 관한 연구 (Pulsed MOCVD of Cu Seed Layer Using a (hfac)Cu(3,3-dimethyl-1-butene) Source and H2 Reactant)

  • 박재범;이진형;이재갑
    • 한국재료학회지
    • /
    • 제14권9호
    • /
    • pp.619-626
    • /
    • 2004
  • Pulsed metalorganic chemical vapor deposition (MOCVD) of conformal copper seed layers, for the electrodeposition Cu films, has been achieved by an alternating supply of a Cu(I) source and $H_2$ reactant at the deposition temperatures from 50 to $100^{\circ}C$. The Cu thickness increased proportionally to the number of cycles, and the growth rate was in the range from 3.5 to $8.2{\AA}/cycle$, showing the ability to control the nano-scale thickness. As-deposited films show highly smooth surfaces even for films thicker than 100 nm. In addition about a $90\%$ step coverage was obtained inside trenches, with an aspect ratio greater than 30:1. $H_2$, introduced as a reactant gas, can play an active role in achieving highly conformal coating, with increased grain sizes.

유연 혈관에서 유체-고체 상호작용에 대한 유한요소 해석 (Finite element analysis of the fluid-structure interaction in a compliant vessel)

  • 심은보;고형종
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.591-596
    • /
    • 2000
  • Flow through compliant tubes with linear taper in wall thickness is numerically simulated by finite element analysis. Two models are examined: a planar two-dimensional channel, and an axisymmetric tube. For verification of the numerical method, flow through a compliant stenotic vessel is simulated and compared to existing experimental data. Computational results for an axisymmetric tube show that as cross-sectional area falls with a reduction in downstream pressure, flow rate increases and reaches a maximum when the speed index (mean velocity divided by wave speed) is near unity at the point of minimum cross-section area, indicative of wave speed flow limitation or "choking" (flow speed equals wave speed) in previous one-dimensional studies. For further reductions in downstream pressure, flow rate decreases. Cross-sectional narrowing is significant but localized. When the ratio of downstream-to-upstream wall thickness is ${\le}$ 2 the area throat is located near the downstream end; as wall taper is increased to ${\ge}$ 3 the constriction moves to the upstream end of the tube. In the planar two-dimensional channel, area reduction and flow limitation are also observed when outlet pressure is decreased. In contrast to the axisymmetric case, however, the elastic wall in the two-dimensional channel forms a smooth concave surface with the area throat located near the mid-point of the elastic wall. Though flow rate reaches a maximum and then falls, the flow does not appear to be choked.

  • PDF

내덴트성 향상을 위한 고강도 도어 외판 개발 (Development of Door Outer Panel using High Strength Steel Sheet for Improving Dent Resistance)

  • 김익수;김태정;정연일;윤치상;임종대
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.254-259
    • /
    • 2007
  • Dent resistance is an important characteristic to avoid damage on automotive outer panels. From a practical point of view, dents can be caused in a number of ways. Considering doors as an example, denting can occur from stone impacts or from the careless opening of an adjacently parked vehicle door. Denting can occur where the door surface is smooth and may not have sufficient curvature to resist dent. These exterior body parts are designed to improve dent resistance using a combination of work hardening and bake hardening. In brief, dent is affected by the shape of the parts and the material properties such as yield strength, strain and thickness. In this work, forming of door outer panel is investigated by Taguchi method. Main parameters are yield strength, thickness, blank size, blank holding force and so on. For the given value of design parameters, forming analysis of the eighteen cases are carried out according to L18 orthogonal array. After comparing the performance by simple conversion of simulation results into dent resistance, the final suggestion of the forming parameters is verified for the optimal improvement of dent resistance.

비대칭 마그네트론 스퍼터로 증착된 비정질 탄소박막의 트라이볼로지 특성에서 CrC 삽입층 효과에 대한 연구 (CrC Interlayer Effect on Tribological Properties of Amorphous Carbon Deposited by UBMS Method)

  • 김필중;박용섭
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.475-480
    • /
    • 2018
  • We investigated the tribological properties of amorphous carbon (a-C) films deposited with CrC interlayers of various thicknesses as the adhesive layer. A-C and CrC thin films were deposited using the unbalanced magnetron (UBM) sputtering method with graphite and chromium as the targets. CrC films as the interlayer were fabricated under a-C films, and various structural, surface, and tribological properties of a-C films deposited with various CrC interlayer thicknesses were investigated. With various CrC interlayer thicknesses under a-C films, the tribological properties of CrC/a-C films were improved; the increased film thickness exhibited a maximum high hardness of over 27.5 GPa, high elastic modulus of over 242 GPa, critical load of 31 N, residual stress of 1.85 GPa, and a smooth surface below 0.09 nm at the condition of 30-nm CrC thickness.

Synthesis of Flake Type Micro Hollow Silica Using Mg(OH)2 Inorganic Template

  • Lee, Ji-Seon;Noh, Kyeong-Jae;Moon, Seong-Cheol;Lee, Young-Chul;Lee, Seong-Eui
    • 한국세라믹학회지
    • /
    • 제54권3호
    • /
    • pp.222-227
    • /
    • 2017
  • Flake-type micro hollow silica was synthesized by precipitation method using an $Mg(OH)_2$ inorganic template and sodium silicate and ammonium sulfate as the silica precursors. We investigated the effects of the silica precursor concentration on the shape, shell thickness, and surface of the hollow silica. When the concentration of the silica precursor was 0.5 M, the hollow silica had a smooth and translucent thin shell, but the shell was broken. On the other hand, the shell thickness of the hollow silica changed in the range of 12 nm to 18 nm with the increase of the precursor concentration from 0.7 M to 1.1 M. Simultaneously, unintended spherical silica satellites were created on the shell surface. The number of satellites and the size rose according to the increased concentration of silica precursor. The reason for the formation of spherical silica satellites is that the $NH_4OH$ nucleus generated in the synthesis of hollow silica acted as another silica reaction site.

원자층 증착법으로 제조된 Al-doped ZnO 투명전도막의 특성평가 (Characterization of Al-doped ZnO (AZO) Transparent Conductive Thin films Grown by Atomic Layer Deposition)

  • 정현준;신웅철;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제22권2호
    • /
    • pp.137-141
    • /
    • 2009
  • AZO transparent conductive thin films were grown on $SiO_2$/Si and glass substrates using diethylzinc (DEZ) and trimethylaluminium (TMA) as the precursor and $H_2O$ as oxidant by atomic layer deposition. The structural, electrical, and optical properties of the AZO films were characterized as a function of film thickness at a deposition temperature of $150^{\circ}C$. The AZO films with various thicknesses show well-crystallized phases and smooth surface morphologies. The 190-nm-thick AZO films grown on Coming 1737 glass substrates exhibit rms(root mean square) roughness of 8.8 nm, electrical resistivity of $1.5{\times}10^{-3}\;{\Omega}-cm$, and an optical transmittance of 84% at 600nm wavelength. Atomic layer deposition technique for the transparent conductive oxide films is possible to apply for the deposition on flexible polymer substrates.

초미세 구리 박판의 마이크로 채널 성형 (Micro channel forming of ultra thin copper foil)

  • 주병윤;임성한;오수익;백승욱
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.49-53
    • /
    • 2005
  • The objective of this research was to establish the size limitation of micro metal forming and analyze the formability of foil. Flat-rolled ultra thin metallic copper foil($3{\mu}m$ in thickness) was used as a forming material and foil was annealed to improve the formability at the temperature of $385^{\circ}C$. Forming die was fabricated by using etching technique of DRIE(deep reactive ion etching) and HNA isotropic etching. For the forming die and coupe. foil were vacuum packed and the forming was conducted as applying hydrostatic pressure of 250MPa to the vacuum packed unit. We successfully obtained the micro channels of $12\~14{\mu}m$ width and $9{\mu}m$ depth from micro forming process we designed. We also investigated the thickness strain distribution of foil from experiment and FE simulation result. Micro channels had a good formability of smooth surface and size accuracy. We expect that micro metal forming technology will be applied to production of micro parts.

  • PDF

Variation for Fruit Yield and Quality Characteristics in Sweet Pepper (Capsicum annuum L.) Germplasm Collection

  • Luitel, Binod Prasad;Lee, Taek Jong;Kang, Won Hee
    • 한국육종학회지
    • /
    • 제43권2호
    • /
    • pp.139-144
    • /
    • 2011
  • Fifty-five sweet pepper (Capsicum annuum L.) germplasm from the Rural Development Administration (RDA) were analyzed for their fruit yield and fruit quality characters, including fruit weight, fruit size, pericarp thickness, total soluble content, fruit lobe, fruit shape, fruit surface and fruit color. Fruit yield per plot ranged from 200 g to 8150 g (average, 1884 g). Fruit fresh-weight per fruit ranged from 27.3 g to 200.0 g with an average of 97.2 g. Fruit length varied from 4.0 cm to 16.2 cm (average, 9.6 cm). Fruit length-to-width ratio ranged from 0.6 to 3.0 with an average 1.7. The fruit pericarp thickness ranged from 1.8 mm to 10.7 mm (average, 4.8 mm). Total soluble content was the highest ($8.5^{\circ}Brix$) in K156286 and the lowest ($5.3^{\circ}Brix$) in K156208 with the average value $6.7^{\circ}Brix$. Fruit lobes numbers varied from 2 to 4. Blocky, triangular, elongated, rectangular and round fruit shape identified among the sweet pepper accessions. Fruit surface varied from smooth to wrinkle and fruit color also varied. The presence of variability in fruit yield and quality traits within the sweet pepper genotypes can be utilized to develop high yielding sweet pepper variety with better fruit quality characters.