• Title/Summary/Keyword: Smoke source

Search Result 123, Processing Time 0.021 seconds

A Study on the natural Convection and Radiation in a Rectangular Enclosure with Ceiling Vent (천장개구부를 갖는 정사각형 밀폐공간내의 자연대류-복사 열전달에 관한 연구)

  • Park Chan-kuk;Chu Byeong-gil;Kim chol;Jung Jai-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 1998
  • This study investigated the natural convection and radiation in a rectangular enclosure with ceiling vent experimentally and numerically. A heat source is located on the center of the bottom surface. The analysis was peformed a pure convection and is combination of natural convection and radiation. The shape of the considered two dimensional model is a square whose center of ceiling($30\%$) is opened. The numerical simulations are carried out for the pure natural convection case and the combined heat transfer case by using the SIMPLE algorithm. For the turbulent flow, Reynolds stresses are closed by the standard $k-{\epsilon}$ model and the wall function is used to determine the wall boundary conditions. The experiment was performed on the same geometrical shape as the computations. The radiative heat transfer is analized by the S-N discrete ordinates method. The results of pure natural convection are compared with those of combined heat transfer by the velocity vectors, stream lines, isothermal lines. The results obtained are as follows 1. Comparing the results of pure convection with those of the combined convection-radiation through the shape of stream lines, isothermal lines are similar to each other. 2. The temperature fields obtained by numerical method are compared to those obtained by experimental one, and it is found that they are showed mean relative error $8.5\%$. 3. Visualization bt smoke is similar to computational results.

  • PDF

Microsatellite Instability in Non-Small Cell Lung Cancer (비소세포폐암에서 Microsatellite Instability)

  • Jeon, Hyo-Sung;Kim, Jeong-Ran;Son, Ji-Woong;Park, Sun-Ha;Park, Tae-In;Kim, Chang-Ho;Kim, In-San;Jung, Tae-Hoon;Park, Jae-Yong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.1
    • /
    • pp.24-32
    • /
    • 2000
  • Purpose: Microsatellite instability(MSI) is frequently used as an indicator of microsatellite mutator phenotype(MMP) tumors. MSI has been observed in a percentage of non-small cell lung cancer(NSCLC). However, its role in tumorigenesis of NSCLC remains unknown. The frequency and pattern of MSI in NSCLC were evaluated and clinical parameters of MSI-positive tumors with those of MSS(microsatellite stable) tumors were compared. Materials and Methods: Twenty surgically resected NSCLCs were analyzed for 15 microsatellite markers located at chromosomes 3p and 9p. The peripheral blood lymphocytes of patients were used as the source of the normal DNA. Results: 1) Of 20 cases, 8(40%) demonstrated MSI. 2) Instability was observed more frequently in tri- and tetra-nucleotide repeats than in dinucleotide repeats. In all cases, instability appeared as a shift of individual allelic bands. 3) LDH was observed in 10(50%) of 20 tumors analyzed. 4) Of 20 cases, MSI-H tumor(showing MSI in the majority of markers) was absent. There were 5 MSI-L tumors(showing MSI in a greater than 10% of markers). 5) No significant difference was observed between MSI-L tumors and MSI-negative tumors in terms of clinicopathologic features such as pack-year history of smoking, histologic subtype, and(delete) stage of disease. There was also no significant difference in the incidence of LDH in relation to the status of MSI. Conclusion: These data strongly suggest that MSI plays different roles in lung and colon cancer. MMP pathway appears to be far less important in the tumorigenesis of NSCLC, caused mainly by cigarette smoke, with little familial tendency.

  • PDF

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.