• 제목/요약/키워드: Smoke particulate

검색결과 103건 처리시간 0.022초

Indoor PM2.5 Concentrations in Different Sizes of Pubs with Non-comprehensive Smoke-free Regulation (비 포괄적인 금연정책을 시행한 호프집의 면적에 따른 실내 PM2.5 농도)

  • Kim, Jeonghoon;Lim, Chaeyun;Lee, Daeyeop;Kim, Heyjin;Guak, Sooyoung;Lee, Na Eun;Kim, Sang Hwan;Ha, Kwon Chul;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • 제41권2호
    • /
    • pp.126-132
    • /
    • 2015
  • Objectives: The Korean government implemented a smoke-free regulation for pubs with a net indoor area of ${\geq}100m^2$ on January 1, 2014. The purpose of this study was to determine the indoor levels of concentrations of particulate matter smaller than $2.5{\mu}m$ ($PM_{2.5}$) in implemented and non-implemented pubs in Seoul and Changwon. Methods: $PM_{2.5}$ concentrations in fifty-two $100-150m^2$ (implemented) and fifty-seven < $100m^2$ (non-implemented) pubs were measured. A real-time aerosol monitor was used to measure $PM_{2.5}$ concentrations. Field technicians recorded characteristics of the pubs including net indoor area, indoor volume and presence of smoking rooms and counted the number of burning cigarettes, patrons and vents. Results: Differences between indoor and outdoor $PM_{2.5}$ concentrations in $100-150m^2$ and < $100m^2$ pubs were not significantly different in each city. Smoking was observed in 33% of $100-150m^2$ pubs and 51% of < $100m^2$ pubs. Average differences between indoor and outdoor $PM_{2.5}$ concentrations in the $100-150m^2$ and < $100m^2$ pubs were $79.2{\mu}g/m^3$ and $155.6{\mu}g/m^3$, respectively. When smokers were not observed, differences between indoor and outdoor $PM_{2.5}$ concentrations ware $12.4{\mu}g/m^3$ in $100-150m^2$ pubs and $24.5{\mu}g/m^3$ in < $100m^2$ pubs. Conclusion: Although the regulation was implemented only in ${\geq}100m^2$ pubs, a higher difference between indoor and outdoor $PM_{2.5}$ concentrations was observed in implemented and non-implemented pubs with smokers. Strict implementation of the regulation in all pubs is needed for better indoor air quality.

Field Evaluation of Particulate Control Efficiency of Electrostatic Precipitator in Thermoelectric Power Plant Associated with Addition of Triethyl Amino(TEA) (트리에틸아민 첨가에 따른 열병합발전소 전기집진장치의 집진효율 특성의 현장 평가)

  • Jo, Wan-Kuen;Jeon, Ok-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제27권4호
    • /
    • pp.445-449
    • /
    • 2005
  • Present study was designed to evaluate the practical application of triethyl amine(TEA) injection for improving the collection efficiency of electrostatic precipitator(ESP) connected to a real operating plant. The major fuels used at the domestic power stations were bituminous coals imported from Australia, China, South Africa, and USA. Although the values of the electric resistance would be more or less different according to the type of the coals used, the unique electric resistance values of fly ash from the coals were mostly higher than $1{\times}10^{12}\;{\Omega}-cm$ and therefore, back corona problems were always expected to occur in the electrostatic precipitator. The particulates concentrations, smoke concentrations and their electric resistivity measured at the outlet of ESP, and the inspection of collection indicated that the injection of TEA improved the collection efficiency of particulate at collection plates of ESP. The electric resistance for, fly ash with the injection concentration of TEA 15 ppm(Purity 99.7%) was lowered to $2.1{\times}10^{11}\;{\Omega}-cm$ after injection from $1.9{\times}10^{12}\;{\Omega}-cm$ before injection. Under this condition, the dust emission content at the stack was reduced to approximately 80%, lowering the average outlet concentrations of particulates from $70\;mg/Sm^3$ to $14\;mg/Sm^3$.

Effects of Personal Exposure to Nitrogen Dioxide on Peak Expiratory Flow in Asthmatic Patients (이산화질소 개인 노출량이 기관지천식 환자의 최대호기유속에 미치는 영향)

  • Kwon, Ho-Jang;Lee, Sang-Gyu;Jee, Young-Koo;Lee, Sang-Rok;Hwang, Seung-Sik
    • Journal of Preventive Medicine and Public Health
    • /
    • 제40권1호
    • /
    • pp.59-63
    • /
    • 2007
  • Objectives : Nitrogen dioxide $(NO_2)$ has been inconsistently associated with gradual decreases in lung function. Here, we studied the effects of $NO_2$ exposure in asthmatics by examining the association between changes in lung function and concentrations of $NO_2$ which were personally measured. Methods : Peak expiratory flow (PEF) and daily personal exposures to $NO_2$ were recorded on 28 patients with asthma (confirmed by methacholine provocation test) over 4 weeks. We used generalized estimating equations to assess the relationship between personal $NO_2$ exposure and PEF, adjusting for potential confounders such as age, gender, outdoor particulate matter, temperature, humidity, and exposure to environmental tobacco smoke. Results : The personal $NO_2$ exposures were higher than the corresponding ambient levels. The mean personal: ambient ratio for $NO_2$ was 1.48. The personal $NO_2$ exposures were not associated with the morning PEF, evening PEF, or the diurnal PEF variability. However, environmental tobacco smoke was negatively associated with both the morning and evening PEF. Conclusions : Among the asthmatic adults who participated in this study, we found no apparent impact of personal $NO_2$ exposures on the peak expiratory flow.

A Study on Exhaust Gas Characteristics of Heavy-duty Diesel Engines through Actual Vehicle Application of Non-influenced Temperature Condition Type Active Regeneration Method (온도조건 비영향형 복합재생방식 DPF의 실차적용을 통한 대형디젤기관의 배출가스 특성 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • 제29권2호
    • /
    • pp.53-59
    • /
    • 2024
  • Cars are one of the main causes of air pollution in large cities, and 34.6% of domestic air pollution emissions come from mobile sources, of which cars account for 69.6%. In particular, the importance of nitrogen oxides (NOx) and particulate matter (PM), which are major pollutants in diesel vehicles, is increasing due to their high contribution to emissions. Therefore, in this study, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation was solved by applying a complex regeneration DPF that is not affected by temperature conditions to large diesel vehicles with higher driving time and engine displacement than small and medium-sized vehicles. And the feasibility of application to large diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the reduction efficiency test on the actual vehicle durability product, PM showed a reduction efficiency of 84% to 86%, and the reduction efficiency of gaseous substances showed a high reduction efficiency of over 90%. The actual vehicle applicability test was completed with three driving patterns: village bus vehicle, police car, and road-going construction equipment vehicle, and no device problems occurred until the end of the test. Both load and no-load smoke measurement results showed a smoke reduction efficiency of over 96%.

The Effect of Hydrogen Added into In-let Air on Industrial Diesel Engine Performance (흡기중의 수소첨가가 산업용 디젤기관의 성능에 미치는 영향)

  • Park, Kweon-Ha;Lee, Jin-A;Lee, Wha-Soon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권8호
    • /
    • pp.1050-1056
    • /
    • 2010
  • Diesel engines introduce only air into the cylinder, and the air is high lycompressed. Fuel is directly injected into the combustion chamber in high temperature and pressure. Therefore diesel engines have high thermal efficiency because of the high compression ratio, while having high level of particulate matter and nitrogen oxide emissions because of the direct fuel injection. Many technologies have been developed to reduce particulate matter and nitrogen oxide emissions from diesel engines. One of the technologies is hydrogen fuel introduced into the combustion chamber with diesel fuel. In this thesis tiny amount of hydrogen is supplied into the combustion chamber in order to enhance the combustion performance. The engine, in which hydrogen is introduced, is tested. There are 20 test conditions given as 5 torque values of 100%, 75%, 50%, 25%, 0%, and 4 engine speeds of 700rpm, 1000rpm, 1500rpm and 2000rpm for the two cases with or without hydrogen addition. Maximum torques and Idle torques at each engine speed are measured, then the torque values are divided into 4 levels with 25% increasing step. The result shows that the fuel consumption, smoke, CO are reduced while the NOx emission is slightly increased, and the hydrogen addition has not a great effect on the performance at low loads but a great effect at a maximum load.

Chemical and Absorption Characteristics of Water-soluble Organic Carbon and Humic-like Substances in Size-segregated Particles from Biomass Burning Emissions

  • Yu, Jaemyeong;Yu, Geun-Hye;Park, Seungshik;Bae, Min-Suk
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권2호
    • /
    • pp.96-106
    • /
    • 2017
  • In this study, measurements of size-segregated particulate matter (PM) emitted from the combustion of rice straw, pine needles, and sesame stem were conducted in a laboratory chamber. The collected samples were used to analyze amounts of organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and ionic species. The light absorption properties of size-resolved water extracts were measured using ultraviolet-visible spectroscopy. A solid-phase extraction method was first used to separate the size-resolved HULIS fraction, which was then quantified by a total organic carbon analyzer. The results show that regardless of particle cut sizes, the contributions of size-resolved HULIS ($=1.94{\times}HULIS-C$) to PM size fractions ($PM_{0.32}$, $PM_{0.55}$, $PM_{1.0}$, and $PM_{1.8}$) were similar, accounting for 25.2-27.6, 15.2-22.4 and 28.2-28.7% for rice straw, pine needle, and sesame stem smoke samples, respectively. The $PM_{1.8}$ fraction revealed WSOC/OC and HULIS-C/WSOC ratios of 0.51 and 0.60, 0.44 and 0.40, and 0.50 and 0.60 for the rice straw, pine needle, and sesame stem burning emissions, respectively. Strong absorption with decreasing wavelength was found by the water extracts from size-resolved biomass burning aerosols. The absorption ${\AA}ngstr{\ddot{o}}m $ exponent values of the size-resolved water extracts fitted between 300 and 400 nm wavelengths for particle sizes of $0.32-1.0{\mu}m$ were 6.6-7.7 for the rice straw burning samples, and 7.5-8.0 for the sesame stem burning samples. The average mass absorption efficiencies of size-resolved WSOC and HULIS-C at 365 nm were 1.09 (range: 0.89-1.61) and 1.82 (range: 1.33-2.06) $m^2/g{\cdot}C$ for rice straw smoke aerosols, and 1.13 (range: 0.85-1.52) and 1.83 (range: 1.44-2.05) $m^2/g{\cdot}C$ for sesame stem smoke aerosols, respectively. The light absorption of size-resolved water extracts measured at 365 nm showed strong correlations with WSOC and HULIS-C concentrations ($R^2=0.89-0.93$), indicating significant contribution of HULIS component from biomass burning emissions to the light absorption of ambient aerosols.

A Study on the Combustion Characteristics of Organic Insulation Materials According to the Gas Toxicity Evaluation Method (가스유해성 평가방법에 따른 유기단열재의 연소특성에 관한 연구)

  • Shim, Ji-Hun;Lee, Jae-Geol;Han, Kyoung-Ho;Kim, Ju-Wan;Song, Seok-Hun;Jo, Hyung-Won;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • 제60권4호
    • /
    • pp.519-524
    • /
    • 2022
  • Domestic building finishing materials are being evaluated according to KS F 2271 standards according to the notification of the Ministry of Land, Infrastructure and Transport, and this test is evaluated using laboratory animals. In this study, experiments were conducted on highly combustible organic insulation materials such as EPS, urethane, and phenolic foam. The purpose of this study was to analyze the cause of the behavioral suspension of the experimental mice by measuring the average behavioral suspension time of the mice caused by the harmful gas generated when these three types of insulation materials were burned. FTIR analysis and smoke density experiment were performed as a cause analysis method for the behavioral suspension of mice, and the experimental results were analyzed by dividing the causes of behavioral suspension into suffocation by particulate matter and toxic inhalation by gaseous substances. As a result of the test, urethane was evaluated as the most harmful insulation material, and as a result of FTIR analysis and smoke density test as a cause analysis for the gas toxicity test results, it is judged that the behavioral stop of the rats by suffocation is higher than the effect of toxic inhalation. This study is a basic study on the cause analysis of harmful gases, and it will be necessary to prepare the toxicity basis and analyze various materials and gases.

An Experimental Research on Performance and Emission Characteristics of Direct-Injection Diesel Engines with Annular Two-stage Combustion Chamber (환상 2단연소실을 갖는 직접분사식 디젤기관의 성능 및 배출물 특성에 관한 실험적 연구)

  • Kim, D.H.;Bae, J.U.
    • Journal of Power System Engineering
    • /
    • 제7권4호
    • /
    • pp.12-18
    • /
    • 2003
  • Various measures have been tried to reduce the NOx emission from diesel engine, but with partial success because the mechanisms of NOx and PM formations appear to have trade-off relation between each other. Therefore it has been known to be difficult to reduce NOx emission and PM emission simultaneously. Two stage combustion method i,e. a combustion process which has rich combustion stage and lean combustion stage one by one, has been developed successfully to reduce NOx formation in the continuous combustion chambers such as in the boilers. But until yet it is not successful to apply the same method in intermittent combustion chamber like in the diesel engine cylinder, as it was, only several research works were carried out. In this study, devised was a uniquely shaped combustion chamber with reformed piston crown intended to keep fuel-rich condition during early stage of combustion and fuel-lean condition during next stage. It was found that the NOx emission decreased significantly at various conditions of operation with the two stage combustion type engines of PR20 type, but other values such as smoke, CO and specific fuel consumption deteriorated as usual.

  • PDF

Study of HSDI Diesel Engine Development for Low Fuel Consumption (HSDI 디젤 엔진 연비 저감 개발에 대한 연구)

  • Chun, Je-Rok;Yu, Jun;Yoon, Kum-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제14권1호
    • /
    • pp.138-143
    • /
    • 2006
  • Modification of injector, oil ring tension reduction and oil pump rotor re-matching with optimization of relevant engine control parameters could drive fuel consumption reduction of HSDI diesel engine. A 5 holes injector was replaced with a 6 holes with smaller nozzle hole diameter and 1.5 k factor, and evaluated in a view of fuel economy and emission trade-offs. With introducing smaller nozzle hole diameter injector, PM(Particulate Matter) was drastically decreased for low engine load and low engine rpm. Modification of oil pump and oil ring was to reduce mechanical friction and be proved to better fuel economy. Optimization of engine operating conditions was a great help for the low fuel consumption. Influence of the engine operating parameters· including pilot quantity, pilot interval, air mass and main injection timing on fuel economy, smoke and NOx has been evaluated with 14 points extracted from NEDC(New European Driving Cycle) cycle. The fuel consumption was proved to $7\%$ improvement on an engine bench and $3.7\%$ with a vehicle.

Effect of the Atmospheric Exposome on the Skin (대기 중 엑스포좀이 피부에 미치는 영향)

  • Song, Mee;Baek, Ji Hwoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제47권3호
    • /
    • pp.185-191
    • /
    • 2021
  • Environmental pollution is defined as contamination of the earth's environment with materials which interfere with human health, quality of life, or the natural functioning of the ecosystem. Whenever a prolonged and repetitive exposure to environmental stressors exceeds the skin's normal defensive potential, there is a disturbance in the skin barrier function leading to the development of various skin diseases. Major air pollutants which affect the skin are polycyclic aromatic hydrocarbons, volatile organic compounds, nitrogen oxides, particulate matter, cigarette smoke, heavy metals and arsenic. Dermal uptake depends on the deposition of air pollutants on the skin surface, the composition of epidermal lipids, and the diffusion through the epidermis to the blood vessels.