• Title/Summary/Keyword: Smoke particulate

Search Result 103, Processing Time 0.023 seconds

Effects of Aftertreatments of Emission Performance in Heavy duty diesel (후처리장치를 이용한 대형디젤기관에서의 배기성능에 관한 연구)

  • 이상준;최경호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.34-41
    • /
    • 2000
  • The purpose of this research was to investigate the effects of exhaust gas recirculation(EGR) with diesel particulate filter(DPF) on heavy duty diesel engine. The exhaust gas was recirculated to the intake manifold after the smoke was eliminated in the DPF, The major conclusions of this research are i)at each engine speed EGR ratio was able to 60% maximum ii) the amount of NOx emissions was decreased to 90% at high engine load and to more than 60% at low engine load and iii) the amout of NOx emissions was increased to five times according to the increase of engine load but the effect of EGR is more effective at high engine load.

  • PDF

Technology for Reducing NOx and Soot Particulate using EGR with Water Emulsified Fuel in Diesel Engines (물혼합 연료 및 EGR의 조합에 의한 디젤기관의 질소산화물과 매연미립자 동시저감 기술에 관한 연구)

  • 박권하;박태인;김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 1997
  • Many research works have been carried out to investigate the factors governing the performance of diesel engine. The area of the study has been focused on reducing both of NOx and smoke because of many difficulties to reduce them simultaneously in diesel engines. One of the efforts is an application of EGR technology to reduce NOx emission, which is very effective, but increases other emissions and makes fuel economy worse. In order to solve the problem, EGR is employed with water emulsified fuel and tested in this paper. Emulsified fuel is produced by centrifugal mixer and the amount of water is controlled by water injector and pulse generator, and EGR rate is controlled with 6-step control valve. The chamber pressure, fuel consumption and emissions are measured with various values of both EGR and water mixing rate, The results show that NOx emission is reduced much rather and smoke is also reduced simultaneously.

  • PDF

An Experimental Study on Emission Reduction by Low Sulfur Diesel Fuel in Diesel Oxidation Catalyst of Heavy Duty Diesel Engine (대형디젤기관의 디젤산화촉매장치에서 저유황 경유에 의한 배출가스 저감에 관한 실험적 연구)

  • 요용석;강호인;한영출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.138-142
    • /
    • 1998
  • Among aftertreatment devices which reduce exhaust gas of diesel engine, diesel oxidation catalyst(DOC) with high reduction efficiency for gaseous matter and particulate matter is now being studied actively. In this study, an experiment was conducted to analyze the effects of low sulfur diesel fuel in heavy duty diesel engine equipped with DOC. We tested to estimate change of engine performance for the low and high sulfur diesel fuels in a 11,000cc diesel engine equipped with DOC. We conducted test to estimate the reduction efficiency of exhaust gas in D-13 mode of heavy duty diesel regulation mode and in smoke opacity mode for two samples of high sulfur content (0.2%) and low sulfur content(0.05%)

  • PDF

Characteristics of Exhaust Emissions from a Heavy-duty Diesel Engine (대형디젤엔진의 오염물질 배출특성)

  • 엄명도;류정호;이종태;임철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.20-27
    • /
    • 1999
  • The proportion of diesel vehicle is very high in this country . PM and NOx emitted from diesel-posered vehicle is severely ;affecting to be air quality . Especially, diesel particulate matters(DPM) including black smoke are hazardous air pollutants to human health and environment. In order to reduce the exhaust emissions from diesel engines, it is necessary to analyze the characteristics of exhaust emissions from diesel engines in various driving conditions. Recently, there are occasion to increase the fuel consumption rate to engine power up. So, in this study we have tested a diesel engine detached from in use -diesel vehicle and analyzed exhaust emission by driving condition and fuel dispersion rate. From this results, we will prepare the comprehensive management plan for exhaust emissions from diesel vehicles and contribute to the improvement of air pollution in urban area.

  • PDF

Characteristics of Nano-particles Exhausted from Heavy-duty Diesel Vehicles with Low Emission Technology (대형경유차 저공해기술 적용에 따른 나노입자 배출특성)

  • Lim Cheol-Soo;Yoo Jung-Ho;Eom Myoung-Do;Hwang Jin-Woo;Kim Ye-Eun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.225-236
    • /
    • 2004
  • Diesel engines which emit a lot of PM and NOx have been known as a main air polluter. Especially, diesel particulate matters (OPM) including black smoke are hazardous air pollutants to human health and environment. The nations retaining advanced engine technologies have reinforced emission regulations. To meet these regulations diesel engine manufacturers have developed low-emission diesel engines, aftertreatment equipments, alternative fuel technologies and so on. In this study, particle number concentrations characteristics according to particle size and engine driving conditions were analyzed when these low-emission technologies were applied. There was a tendency of increasing particle number concentrations from heavy-duty diesel engines with increasing engine rpm and load rate. In the cases of COPF (Catalytic Diesel Particulate Filter), CNG (Compressed Natural Gas) engine and ULSD (Ultra Low Sulfur Diesel) more than 99% of particle number concentration were removed.

밀폐된 공간에서 환기에 의한 ETS 성분 제거

  • 황건중;이문수;나도영
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.102-108
    • /
    • 1999
  • This study was conducted to evaluate the ventilation to remove gases, vapor and particles of environmental tobacco smoke(ETS) in a closed room. The ventilation rate choosed were 0.445 ㎥/min, 0.528 ㎥/min, and 0.625 ㎥/min. ETS components measured were total suspended particle(TSP), ultraviolet particulate matter(UVPM), fluorescent particulate matter(FPM), solanesol, carbon dioxide($CO_2$), carbon monoxide(CO), nicotine, and 3-ethenylpyri-dine(3-EP). The concentration of ETS components measured rapidly decreased as increasing ventilation rate, but the removal efficiency by ventilation was different from each ETS compounds. The $CO_2$, and CO, gaseous components of ETS, were dominant components to be removed from the room by ventilation. The ventilation with 0.528 ㎥/min for 1 hr was enough to remove over 99% of those gaseous components. Nicotine and 3-EP needed the ventilation for 2 hrs to reduce over 95 % of those components. As the same ventilation rate, 99 % of TSP and solanesol concentration were removed from the room within 2 hrs, UVPM and FPM concentration decreased 90 %.

  • PDF

An Experimental Study on the Characteristics of Performance and Exhaust Gas Emission with Charging Diesel Engine on Oxygen-enriched and Cooled-EGR (디젤기관에서 산소과급 및 Cooled-EGR에 의한 성능 및 배출가스 특성에 관한 실험적 연구)

  • 류규현;한영출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • Recently, The world is faced with the very serious problems related to the increasing use of the conventional petroleum fuels. The air pollutions in big cities have been occurred by the exhaust emissions from automobiles. Many researchers have been attracted various oxygen-enriched for the measure of these problems. In this study, Oxygen-enriched air supplied to a diesel engine has significant benefits in reducing the particulate matter emission but detects in increasing the NOx. This study concluded that the oxygen-enriched and cooled-EGR might be a good measure to reduce smoke, particulate emission and NOx in diesel engine.

The Evaluation of Catalytic Trap Oxidizer on a City Bus (市內버스 煤煙防止를 위한 觸媒酸化濾過裝置의 實用化 硏究)

  • Cho, Kang-Rae;Kim, Yang-Kyun;Eom, Myung-Do;Kim, Chong-Chun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.79-87
    • /
    • 1989
  • In order to reduce the smoke emission from the in-service city bus, this study was evaluated the particulate reduction efficiency and regeneration ability of the catalitic trap oxidizer (CTO) on the city bus (D0846HM engine) equipped with it. Before the on-road CTO test, the laboratory test of CTO on engine test-bench was performed. Reduction efficiencies of smokes and particulates were 54 and 45%, and those of gaseous pollutants such as carbon monoxide (CO) and hydrocarbons (HC) were 90 and 60%. In order to evaluate the regeneration ability of the CTO by the catalytic oxidation of trapped particulate, field test was performed on the in-service road. The regeneration temperature was 350$^\circ$ which was same with the exhaust temperature of city bus.

  • PDF

Adsorption Behavior of PAHs in Cigarette Smoke on Glass Beads - Effect of Plasma Polymerization Coating (담배 연기 내 PAH의 유리입자에 대한 흡착거동 - 플라즈마 고분자 중합 코팅 영향)

  • Basarir, Fevzihan;Rhee, Moon-Soo;Lee, Young-Taek;Yoon, Tae-Ho
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.137-143
    • /
    • 2010
  • Glass beads (GBs) were modified via plasma polymerization coatings in order to enhance the adsorption of polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke and activated carbons (ACs) were also utilized for comparative purposes. First, GBs and ACs were subjected to surface modification via plasma polymerization coating of acrylic acid, acrylonitrile, 1,3-diaminopropane, thiophene or dimethylphosphite with a RF plasma (13.56 MHz) generator. Next, their adsorption behavior was evaluated with a home-made 4-port smoking machine by collecting the total particulate matters (TPMs) on a Cambridge filter pad, followed by the separation of PAHs via solid phase extraction and analysis with GC/MS. Finally, the plasma polymerization coatings were analyzed by FT-IR/ATR to elucidate the adsorption mechanism, while the topology of the modified GBs and ACs were studied by FE-SEM.

Studies on the Adsorbents for Cigarette Filter I. Effect of Pore Voume Distribution and Specific Area of Adsorbents on the Removal Efficiency of Smoke Components by Triple Filter (담배필터용 흡착제에 관한 연구 제1보. 흡착제의 종류와 동공특성이 담배연기성분 제거능에 미치는 영향)

  • 박태무;이영택;김성한;오영일
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 1988
  • Cigarettes were made using a triple filter with several porous materials in its cavity. The removal effect of the adsorbents on carbon monoxide and hydrogen cyanide in cigarette smoke was investigated with the variation of their surface area and pore volume distributions. Several attempts were made to activated coconut shell based char under the fixed steam purging rate. 1. The specific surface area increased in number of micropore. It was found for transitional pore to have a little effect on the total surface area. 2. A Small amount of the particulate matter adsorbed on the adsorbents with transitional pores, Zeolite showed a little effect on the carbon monoxide adsorption though its small pore volume, but there was no significant difference in the adsorption capacity zeolite and the others. 3. In the adsorption for hydrogen cyanide as a vapor phase in cigarette smoke, the adsorption effect of the adsorbents increased remarkably with increasing their surface area and number of micropore. It was considered that the adsorbents with small pore volume like molecular seive 4A, in which the capillary diffusion of adsorbates could not be able, would not be effective for the adsorption of hydrogen cyanide.

  • PDF