• Title/Summary/Keyword: Smoke particulate

Search Result 103, Processing Time 0.028 seconds

Evaluation of the in vitro biological activity of selected 35 chemicals (35종의 특정 화학성분들의 in vitro 활성 평가)

  • Shin, Han-Jae;Sohn, Hyung-Ok;Park, Chul-Hoon;Lee, Hyeong-Seok;Min, Young-Keun;Hyun, Hak-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.1
    • /
    • pp.30-40
    • /
    • 2007
  • The objective of this study was to investigate the contribution of various smoke constituents to the toxicological activity of total particulate matter(TPM) or the gas/vapor phase(GVP). These components included phenol compounds, aromatic amines, polycyclic aromatic hydrocarbons, heterocyclic amines, and carbonyl compounds. The mutagenic and cytotoxic potencies were assessed using the Salmonella mutagenicity assay with S. typimurium TA98 strain and the neutral red uptake cytotoxicity assay(NRU) with BALB/c 3T3 fibroblast cells, respectively. The Salmonella mutagenicity test showed that heterocyclic amines exhibited significantly higher levels of toxicity compared to other smoke constituents. Among them, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline(MeIQ) was shown the most mutagenic compound with a specific mutagenicity of $7.9{\times}10^5\;revertants/{\mu}g$. An analysis of the possible contribution revealed that MeIQ account for only 0.85% of the 2R4F-TPM mutagenicity in TA98. NRU data demonstrated that high cytotoxic activity was obtained for hydroquinone, formaldehyde, and acrolein. Based on the results of the present study, the contribution of acrolein to the cytotoxicity of the GVP fraction was calculated as 61%. Thus, a large proportion of the cytotoxic activity of this complex mixture, cigarette smoke gas phase, can be attributed to the acrolein.

Measurements of Particulate Matters for the HSDI Diesel Engine with DOC using the ELPI (ELPI를 이용한 산화촉매 장착 고속 직접분사식 디젤엔진의 입자상물질 계측)

  • Choi, Byung-Chul;Jang, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2245-2250
    • /
    • 2003
  • Particulate matters(PM) have bad effect on the health. We carried out measurements of diesel PM under $10{\mu}m$ diameter from a HSDI diesel engine with a diesel oxidation catalyst(DOC) by using the ELPI. This paper compares the two results of the smoke level and the PM level of masses and numbers. We also investigated the effect of the DOC. Under high speed and load, HSDI diesel engine exhausts much masses of particulate matters over 100nm diameter, and a number of PM from 7 to 100nm diameters at the same condition. DOC could reduce the total mass of the PM. However, the DOC could increase the number of ultra fine PM. Before light-off of the soot, the DOC absorb the PM and the DOC oxidize the PM after light-off temperature. The fine PM could be made during the oxidation. Therefore, the advanced DOC is needed to reduce the number of the fine PM.

  • PDF

EffECTIVE PARTICULATES REDUCTION IN DIESEL ENGINES THROUGH THE USE OF FUEL CATALYSED PARTICULATE FILTERS

  • Vincent, M.-W.;Richards, P.-J.;Rogers, T.-J.
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • There is Increasing world-wide interest in diesel particulate filters (DPF) because of their proven effectiveness in reducing exhaust smoke and particulate emissions. Fine particulates have been linked to human health . DPF use requires a means to secure the bum-out of the accumulated soot, a process called regeneration. If this is not achieved, the engine cannot continue to operate. A number of techniques are available, but most are complex, expensive or have a high electrical demand. The use of fuel additives to catalyse soot bum-out potentially solves the problem of securing regeneration reliably and at low cost. Work on organo-metallic fuel additives has shown that certain metals combine to glove exceptional regeneration performance. Best performance was achieved with a combination of iron and strontium based compounds. Tests were carried out un a bed engine and on road vehicles, which demonstrated effective and reliable regeneration from a tow dose fuel additive, using a single passive DPF. No control valves, flow diverters. heaters or other devices were employed to assist regeneration. Independent particle size measurements showed that there were no harmful side effects from the use of the iron-strontium fuel additive.

Effects of Antioxidant on Oxidative Stress and Autophagy in Bronchial Epithelial Cells Exposed to Particulate Matter and Cigarette Smoke Extract

  • Hur, Jung;Rhee, Chin Kook;Jo, Yong Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Background: We evaluated the effect of particulate matter (PM) and cigarette smoke extract (CSE) on bronchial epithelial cell survival, as well as oxidative stress and autophagy levels. Moreover, we aimed to assess the effect of the antioxidant N-acetylcysteine (NAC) on the adverse effects of PM and CSE exposure. Methods: Normal human bronchial epithelial cells (BEAS-2B cells) were exposed to urban PM with or without CSE, after which cytotoxic effects, including oxidative stress and autophagy levels, were measured. After identifying the toxic effects of urban PM and CSE exposure, the effects of NAC treatment on cell damage were evaluated. Results: Urban PM significantly decreased cell viability in a concentration-dependent manner, which was further aggravated by simultaneous treatment with CSE. Notably, pretreatment with NAC at 10 mM for 1 hour reversed the cytotoxic effects of PM and CSE co-exposure. Treatment with 1, 5, and 10 mM NAC was shown to decrease reactive oxygen species levels induced by exposure to both PM and CSE. Additionally, the autophagy response assessed via LC3B expression was increased by PM and CSE exposure, and this also attenuated by NAC treatment. Conclusion: The toxic effects of PM and CSE co-exposure on human bronchial epithelial cells, including decreased cell viability and increased oxidative stress and autophagy levels, could be partly prevented by NAC treatment.

Physical Properties of Carbon Prepared from a Coconut Shell by Steam Activation and Chemical Activation and the Influence of Prepared and Activated Carbon on the Delivery of Mainstream Smoke

  • Ko, Dong-Kyun;Shin, Chang-Ho;Jang, Hang-Hyun;Lee, Young-Taeg;Rhee, Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.30 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • Several activated carbon in different specific surface area was prepared by steam and chemical activation of coconut shell. Products were characterized by BET ($N_2$) at 77K, and probed to be highly specific surface area of $1580m^2/g$ and pore volume that had increased with activating conditions. And also we have analyzed the adsorption efficiency of vapor phase components in cigarette mainstream smoke in order to evaluate the relationship between thesmoke components and the physicochemical properties of activated carbons. As a result of this study, the delivery of mainstream smoke was directly affected by the specific surface area and the pore size of activated carbon. The activated carbon prepared by steam activation exhibited better adsorption efficiency on the vapor phase components in mainstream smoke compared with activated carbon prepared by $ZnCl_2$, due to the higher micro-pore area of 66%. But the adsorption efficiency of semi-volatile matters such as phenolic components in a main stream smoke by the activated mesoporous carbon prepared by $ZnCl_2$ is more effective. From the these results, we can conclude that specific surface area by the micropore area increased the adsorption efficiency of activated carbon on vapour phase components, but semi-volatiles or particulate matter was affected by the ratio of mesopore area in total specific surface area.

Analysis of Acrylamide in Mainstream Cigarette Smoke and Effects of Total Nitrogen and Reducing Sugars on Acrylamide Content

  • Kim, Ick-Joong;Lee, John-Tae;Min, Hye-Jeong;Kim, Hyo-Keun;Hwang, Keun-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.140-145
    • /
    • 2007
  • Acrylamide has been found in many foods. Acrylamide in foodstuffs were analyzed by a GC/MS after bromination of acrylamide or by a LC/MS for underivatized acylamide. Time consuming and laborious clean up procedures is applied for the purification of the extract, in these methods. In this study, a simple and fast method without clean up step for the analysis of acrylamide in mainstream cigarette smoke was developed by using liquid chromatography-tandem mass spectrometry (LC/MS/MS) and the effects of tobacco leaf constituents on acrylamide content was observed. The analysis of acrylamide in mainstream cigarette smoke started to collect TPM (total particulate matter) from smoking and to extract by 0.1 % acetic acid solution and then to detect by liquid chromatography tandem mass spectrometry using electrospray in the positive mode. The recovery of acrylamide in 2R4F reference cigarette was 98 % and the reproducibility was 2.5 % and the limit of detection was 1.6 ng/mL. Reducing sugars and amino acids are considered to be main precursors of acrylamide in foodstuffs. Cut tobacco contain substantial amounts of reducing sugars and amino acid which may be explained the occurrence of acrylamide in mainstream cigarette smoke. The effects of reducing sugars and total nitrogen studied in an experiment with a various tobacco types. This result indicated that reducing sugars are not limiting factor for acrylamide formation, but the level of acrylamide in cigarette smoke was significantly correlated with the total nitrogen contents.

Optimization of Analytical Procedure for Hydrogen Cyanide in Mainstream Smoke

  • Lee, John-Tae;Kim, Hyo-Keun;Hwang, Keon-Joong;Jang, Gi-Chul;Lee, Jeong-Min;Kim, Ick-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.125-131
    • /
    • 2007
  • Hydrogen cyanide(HCN), formed from pyrolysis of various nitrogenous compounds such as protein, amino acids and nitrate in tobacco, is present in both the particulate phase and vapor phase of cigarette smoke. Typically the determination of HCN in cigarette smoke has been done through colorimetric and electrochemical techniques, such as fluorescence spectrometry, UV-spectrophotometry (UV), continuous flow analyzer (CFA), capillary GC-ECD and ion chromatography (IC). Most of these techniques are known to be time-consuming and some of them lack specificity or sensitivity. The available results from both our laboratory and reported literatures for 2R4F Kentucky reference cigarette, smoked under ISO condition, show a relatively wide variation ranging from 100 to 120 ug/cig of HCN. Especially, the precision and accuracy of the analytical results of HCN tend to get worse in low tar cigarettes and under intense smoking condition. In this paper, a more optimized analytical methods than previous ones are suggested. This method shows lower detection limit and has improved precision and accuracy, so it is applicable for wide tar level cigarettes under intense smoking condition as well as under ISO smoking condition. Important features of this method are improved sample collection and quantification systems such as the number of trapping units, volume, temperature and type of trapping solution. To avoid volatilization loss of HCN in analyzing mainstream smoke, it is highly recommended that pH values of trapping solutions should be maintained over 11 and cold traps should be used in collecting mainstream smoke.

Desalting of papermaking tobacco sheet extract using selective electrodialysis

  • Li, Chuanrun;Ge, Shaolin;Li, Wei;Zhang, Zhao;She, Shike;Huang, Lan;Wang, Yaoming
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.381-393
    • /
    • 2017
  • The inorganic components in tobacco sheet extract have significant influence on the sensory taste of the cigars and the harmful component delivery in cigarette smoke. To identify the contributions of the divalent inorganic components on harmful components delivery in cigarette smoke, a self-made selective electrodialysis was assembled with monovalent ion-selective ion exchange membranes. The influences of current density and extract content on the desalination performance were investigated. Result indicates that the majorities chloride, nitrate, and sulfate ions were removed, comparing with 50-60% of potassium and only less than 10% of magnesium and calcium ions removed in the investigated current density. The permselectivity of the tested cations across the Selemion CSO cation exchange membranes follows the order: $K^+>Ca^{2+}>Mg^{2+}$. A current density of $15mA/cm^2$ is an optional choice by considering both the energy consumption and separation efficiency. When the extract contents are in the range of 7%-20%, the removal ratios the potassium ions are kept around 60%, while the removal ratios of the calcium and magnesium ions fluctuate in the range of 16-27% and 8-14%, respectively. The tobacco smoke experiments indicated that the divalent metal ions have dual roles for the harmful component delivery in cigarette smoke. The divalent potassium and calcium ions were unfavorable for the total particulate matter emission but beneficial to decrease the HCN delivery in the mainstream cigarette smoke. The selective electrodialysis is a robust technology to decrease the harmful component delivery in cigarette smoke.

Characterization of Respirable Suspended Particles and Polycyclic Aromatic Hydrocarbons associated with Environmental Tobacco Smoke

  • Baek, Sung-Ok;Park, Jin-Soo;Kim, Mi-Hyun;Roger A, Jenkins
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E
    • /
    • pp.1-17
    • /
    • 2000
  • In this study, the concentrations of particulate organic constituents of environmental tobacco smoke(ETS) were determined using an environmental smog chamber, where ETS is the sole source of target compounds. ETS was generated in a 30 ㎥ environmental chamber by a number of different cigarettes, including the Kentucky 1R4F reference cigarette and eight commercial brands. A total of 12 experimental runs was conducted, and target analytes included a group of ETS markers both in vapor and particulate phase and a class of polycylic aromatic hydrocarbos(PAHs) associated with ETS particles. The mass concentrations of PAH in ETS particles were also determined. The average contents of benzo(a) pyrene and benzo(a) anthracene in ETS particles for the commercial brands were 12.8 and 21.5$\mu\textrm{g}$/g, respectively, There values are all somewhat higher than those determined previously by other studies. Results form the chamber study are further used to estimate the average and variability of cigarette yields for target compounds associated with ETS. Finally, ratios of RSP to the surrogate standards of UVPM, FPM and solanesol were calculated for each sample. The average conversion factors factors for the eight commercial brands were 7.3, 38, and 41 for UVPM, EPM, and solanesol, respectively. The UVPM and FPM factors are in good agreement with the recently published values. Whereas there might be a substantial difference in the solanesol content among cigarettes produced in different countries, the variability is somewhat greater than those of UVPM and FPM, Unfortunately, comparison of the PAH yield data from this study with literature values was complicated by a lack of consistency in cigarette smoke generating methodology. Validation of the PAH yields was also difficult due to a lack of information on the ETS related PAH in the literature. From and engineering viewpoint , however, these data on the cigarette yields of ETS components may still provide useful information to studies on the mathematical modeling of indoor air quality management regarding tobacco smoke as a source of interest, or to studies on the assessment of human exposure to ETS.

  • PDF

Impact of the Smoke-free Law on Secondhand Smoke in Computer Game Rooms (금연정책 시행이 전국 PC방의 간접흡연에 미치는 영향)

  • Guak, Sooyoung;Lee, Kiyoung;Kim, Sungreol;Kim, Sungcheon;Yang, Wonho;Ha, Kwonchul
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • Objectives: This study assessed the impact of the smoke-free law on secondhand smoke exposure in computer game rooms by measuring concentrations of particulate matter smaller than $2.5{\mu}m$($PM_{2.5}$). Methods: Indoor $PM_{2.5}$ concentrations were measured in 56 (during the smoke-free guidance period) and 118 computer game rooms (after the law went into effect) in four cities (Seoul, Cheonan, Daegu and Kunsan) in Korea. The number of smokers in the computer game rooms was also counted every five minutes. Results: Although a smoking ban had been implemented nationally, smoking was observed in 47% of the computer game rooms. Smoking density decreased from 1.62 persons per $100m^3$ during the guidance period to 0.32 persons per $100m^3$ after the smoke-free law. There is no statistically significant difference of $PM_{2.5}$ concentrations before and after the smoking ban. The $PM_{2.5}$ concentration was two times higher than the US NAAQS of $35{\mu}g/m^3$. The $PM_{2.5}$ concentration in computer game rooms without smokers was two times higher than the outdoor concentration. Conclusion: The smoke-free law in computer game rooms was complied with, even after the guidance period, in Korea. Indoor $PM_{2.5}$ concentration after smoke-free law implementation was high due to this non-compliance. High $PM_{2.5}$ concentration in computer game rooms without smokers might be due to smoking booths. The complete prohibition of smoking in computer game rooms should be implemented to protect patrons from secondhand smoke exposure.