• 제목/요약/키워드: Smoke particulate

검색결과 103건 처리시간 0.026초

EFFECT OF CIGARETTE PAPER ON CIGARETTEAPPEARANCE BURN RATE AND SIDESTREAM SMOKE

  • Jr Vladimir Hampl
    • 한국연초학회:학술대회논문집
    • /
    • 한국연초학회 2000년도 24회 정기총회 및 43회 학술발표회
    • /
    • pp.12-21
    • /
    • 2000
  • The smoke from a burning cigarette is classified as mainstream, which is the smoke inhaled by the smoker during a puff, and sidestream, which is defined by ISO 10185 as all smoke which leaves a cigarette during the smoking process other than from the butt end. Most of the sidestream smoke is generated during static burn, that is, in between puffs. The amount of sidestream smoke generated by a cigarette depends on the cigarette construction, tobacco blend, and properties of the cigarette paper, The main paper properties affecting sidestream smoke generation are: porosity, basis weight, type and amount of filler, type and amount of burn additive.Sidestream smoke is composed of a visible phase (small liquid droplets) and an invisible phase (gaseous molecules). This paper focuses on the visible portion of the sidestream smoke. Optical methods, which are based on the relationship between light scattering and density of the rising plume of smoke, have been used successfully by the industry. However, the present trend is to use gravimetric methods where the particulate matter is captured on a Cambridge(R) filter pad and weighed. The gaseous portion of the sidestream smoke, which does not contribute to the visible sidestream smoke, passes through the Cambridge filter pad.Sidestream smoke reduction is achieved by modifying certain mass transport processes occurring in a smoldering cigarette. There are four main pathways for reducing sidestream smoke: A) less tobacco burned, B) slower rate of tobacco combustion, C) more efficient trapping of smoke by the cigarette paper, and D) more complete combustion of tobacco. This paper discusses how the physical properties of paper and cigarette construction affect sidestream smoke reduction via the above four mechanisms.

  • PDF

Reduction in Salmonella mutagenicity of mainstream cigarette smoke condensate by cation exchange chromatography

  • Shin, Han-Jae;Lee, Byeong-Chan;Sohn, Hyung-Ok;Park, Chul-Hoon;Lee, Hyeong-Seok;Yoo, Ji-Hye;Lee, Dong-Wook;Hyun, Hak-Chul
    • 한국연초학회지
    • /
    • 제30권2호
    • /
    • pp.109-116
    • /
    • 2008
  • Mutagenicity of cigarette smoke is one of the major health concerns related to smoking. Reduction of the components comprising mutagenic activity in cigarette mainstream smoke can be expected to bring about reduced risk of smoking. The purpose of this study is to isolate mutagenic compounds and to investigate the relative contribution to allover mutagenicity of smoke to find clues for the effective elimination of the components. Cigarette smoke condensate (CSC) was obtained from total particulate matter (TPM) of mainstream smoke, and several fractions fractionated from CSC were made by combination of cation exchange chromatograph and reverse-phase chromatography. The mutagenic activity of these fractions was assessed using Salmonella mutagenicity assay with S. typimurium TA98 strain in the presence of metabolic activation system (S-9). The fractions isolated by cation exchange and reverse-phase column showed relatively high mutagenic activity. The basic and hydrophilic fraction 9 showed approximately 33% of mutagenic activity of CSC and its specific activity was 2,459 revertants/mg TPM. These results suggest that hydrophilic cation exchanger and/or other adsorbents possessing similar properties may be used to remove the mutagenic compounds from mainstream smoke.

흡착제 세공 특성이 담배연기성분 제거에 미치는 영향 (Effect of Adsorbent Pore Characteristics on the Removal Efficiency of Smoke Components.)

  • 이영택;김영호;신창호;임광수
    • 한국연초학회지
    • /
    • 제14권1호
    • /
    • pp.87-93
    • /
    • 1992
  • The adsorption efficiency of some adsorbents for the organic solvents and gas phase of smoke was investigated. 1. Specific surface area of activated carbon increased to 1900 mfg with increased activation time. 2. Adsorption efficiency of benzene and acetone increased with increasing total surface area. Adsorption capacity for gas phase such as hydrogen cyanide, aldehyde was proportional to the micro pore surface area under 20A. 3. The removal efficiency of particulate matter of smoke was higher with the adsorbents of relatively higher pore size compared to that of micro pore.

  • PDF

Differential Effects between Cigarette Total Particulate Matter and Cigarette Smoke Extract on Blood and Blood Vessel

  • Park, Jung-Min;Chang, Kyung-Hwa;Park, Kwang-Hoon;Choi, Seong-Jin;Lee, Kyuhong;Lee, Jin-Yong;Satoh, Masahiko;Song, Seong-Yu;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • 제32권4호
    • /
    • pp.353-358
    • /
    • 2016
  • The generation and collection of cigarette smoke (CS) is a prerequisite for any toxicology study on smoking, especially an in vitro CS exposure study. In this study, the effects on blood and vascular function were tested with two widely used CS preparations to compare the biological effects of CS with respect to the CS preparation used. CS was prepared in the form of total particulate matter (TPM), which is CS trapped in a Cambridge filter pad, and cigarette smoke extract (CSE), which is CS trapped in phosphate-buffered saline. TPM potentiated platelet reactivity to thrombin and thus increased aggregation at a concentration of $25{\sim}100{\mu}g/mL$, whereas 2.5~10% CSE decreased platelet aggregation by thrombin. Both TPM and CSE inhibited vascular contraction by phenylephrine at $50{\sim}100{\mu}g/mL$ and 10%, respectively. TPM inhibited acetylcholine-induced vasorelaxation at $10{\sim}100{\mu}g/mL$, but CSE exhibited a minimal effect on relaxation at the concentration that affects vasoconstriction. Neither TPM nor CSE induced hemolysis of erythrocytes or influenced plasma coagulation, as assessed by prothrombin time (PT) and activated partial thromboplastin time (aPTT). Taken together, CS affects platelet activity and deteriorates vasomotor functions in vitro. However, the effect on blood and blood vessels may vary depending on the CS preparation. Therefore, the results of experiments conducted with CS preparations should be interpreted with caution.

도시지역 사무실내 공기 중 환경담배연기의 측정 - 흡연이 부유먼지 농도에 미치는 영향을 중심으로 - (Measurement of Environmental Tobacco Smoke in the Air of Offices in Urban Areas - Focusing on the Impact of Smoking on the Concentrations of Suspended Particles -)

  • 백성옥;박상곤
    • 한국대기환경학회지
    • /
    • 제20권6호
    • /
    • pp.715-727
    • /
    • 2004
  • This study was carried out to evaluate non-smoker's exposure levels to environmental tobacco smoke (ETS) in the air of offices in urban areas. A total of 65 offices were selected from two large cities, i.e. Daegu and Daejeon. The field sampling was conducted repeatedly in summer (1999) and winter (1999~2000). The measured ETS markers included respirable suspended particles (RSP as PM$_{40}$ ), vapor and particulate phase ETS markers, including nicotine, 3-ethnyl pyridine (3-EP), ultraviolet absorbing particulate matter (UVPM), fluorescing particulate matter (FPM), and solanseol in ETS particles (SolPM). RSP was measured gravimetrically by a microbalance. The particle samples were then used for the determination of particulate ETS markers by HPLC, while vapor phase markers determined by GC/NPD. The analytical methods were validated for repeatability, linearity, detection limits, and duplication precision. The concentrations of RSP and other ETS markers were significantly higher in smoking offices than non-smoking offices. Despite the similar smoking strength in each office for different seasons, the concentration levels of ETS components appeared to be higher in winter than summer. The contributions of ETS to RSP concentrations based on SolPM, FPM, and UVPM methods were estimated to be in the range of 15.2 ~ 25.3% in smoking offices, whereas 2.4 ~ 15.9% in non-smoking offices. The cooling and heating types did not affect significantly the concentrations of RSP and other ETS markers. Finally, further research issues were suggested to obtain more scientific information on the non-smoker's exposure to ETS with respect to the frame of risk assessment..

인간 유래 폐 세포주별 담배연기 분획의 염증 반응 민감도 비교 (Comparison of the Sensitivity of Human Bronchial Epithelial Cells to Cigarette Smoke-induced Inflammatory Responses)

  • 유지혜;손형옥;박철훈;이형석;장미;현학철;신한재
    • 한국연초학회지
    • /
    • 제32권1호
    • /
    • pp.19-27
    • /
    • 2010
  • The aim of this study is to compare the sensitivity of both two NCI-H292 and A549 cell types to acute inflammatory responses induced by cigarette smoke. For this, we treated two kinds of smoke fractions derived from 2R4F reference cigarettes: total particulate matter(TPM) collected onto a Cambridge filter pad and gas/vapor phase(GVP) prepared by bubbling through in buffer solution. When we measured cellular cytotoxicity by neutral red uptake assay after treatment for 24 hours, TPM and GVP induced cytotoxic effect in a dose-dependent manner in the range of 10-$100{\mu}g$/mL and 60-$300 {\mu}g$/mL., respectively, in both cell types without any cellular difference. Additionally, when we examined acute inflammatory responses by analyzing cytokines secreted into culture media including tumor necrosis factor-$\alpha$ (TNF-$\alpha$), interleukin-8(IL-8), and transforming growth factor-$\alpha$(TGF-$\alpha$) as well as matrix metalloproteinase-1(MMP-1), the treatment with smoke fractions increased those marker proteins in a dose-dependent manner in NCI-H292. Meanwhile, in A549 cells only MMP-1 was observed to be increased in a dose-dependent fashion. Collectively, our data indicate that NCI-H292 cell type is more sensitive to cigarette smoke-induced inflammatory response than A549 cells. This suggests that NCI-H292 could be useful as an in vitro evaluation tool to assess harmful effects of cigarette smoke.

배출허용기준 대응기술을 고려한 국내 소형 경유 운행차의 대기오염물질 관리 방안 (Control Measures for Air Pollutant Emissions from In-Use Light-Duty Diesel Vehicles Regarding their Emission Control Technologies)

  • 이태우;박하나;박준홍;전상진;김정수;최광호
    • 한국대기환경학회지
    • /
    • 제30권4호
    • /
    • pp.327-338
    • /
    • 2014
  • The objective of this study is to enhance the effectiveness of Korean Inspection and Maintenance (I/M) program. Three main tasks are: to measure pollutant emissions of in-use light-duty diesel vehicles (LDVs); to evaluate the validity of existing smoke control scheme for low-smoke-emitting vehicles, which have diesel particulate filters, DPF, to meet stringent Euro-5 emission limits; and to assess the necessity and the benefit of $NO_x$ inspection, which is not involved in current I/M program. We measured second-by-second smoke, particulate and gaseous emissions of 27 LDVs using opacity smoke meter, photo-acoustic soot sensor, and portable emissions measurement system, respectively, under the Korean I/M test driving cycle, KD-147. We find that the DPF plays a key role in controlling soot, which can be considered as black carbon contained in particulate matter. Thus, from an I/M perspective, we believe smoke inspection strategies for Euro-5 diesel vehicles should be more focused on the capability of detecting DPF malfunctions or failures, in order to keep DPF properly functional. Fleet averaged distance-specific $NO_x$ emissions are consistently higher than corresponding emission limits, and the values are similar among pre-Euro-3, Euro-3, and Euro-4 vehicle fleets. These findings indicate that the $NO_x$ inspection should be incorporated into current I/M program in order to manage urban $NO_x$ emissions. This research allows the Korean I/M program keep pace with developments in vehicle technologies, as well as the increased emphasis on $NO_x$ with respect to air quality and human health.

선박용 저속디젤엔진 적용을 위한 PM-NOx 동시저감 배출저감설비 해상실증 연구 (Study on the On-Board Test of After-Treatment Systems to Reduce PM-NOx in Low-Speed Marine Diesel Engine)

  • 고동균;정석영;김인섭;안계원;남연우
    • 해양환경안전학회지
    • /
    • 제29권5호
    • /
    • pp.497-504
    • /
    • 2023
  • 본 연구에서는 소형선박용 중·고속 디젤엔진에 적용하여 연구 중인 SCR+DPF 기술을 저속엔진이 설치된 선박에 탑재하여 해상 실증 시험을 수행하였다. 대상 선박(총 톤수 2,881 톤, 정격출력 1,470kW@240rpm ×1)은 국내 연해를 운항하는 일반화물선으로 배출저감설비의 선박 탑재를 위해 도면 개발, 승인 및 선박 임시검사를 수행하였다. 저감성능 확인을 위해서 가스상물질 측정장비는 NOx technical code 및 ISO-8178의 분석방법을 준용하는 장비를 사용하였으며, 입자상물질 측정장비는 국제해사기구(IMO)에서 논의하고 있는 블랙카본 측정 방법 중 하나인 스모크미터를 사용하였다. 시험은 황 함유량 따라 MGO(0.043%), LSFO(0.42%) 2종의 연료를 사용하였으며 실제 운항하는 엔진회전수(130, 160 및 180 rpm)를 고려하여 시험 조건을 설정하였다. 시험 조건에 따라 배출저감설비의 전·후단에서 가스상 및 입자상(매연) 물질을 측정하여 배출저감설비의 저감효율을 확인하였으며 모든 시험 조건에서 NOx의 경우 90% 이상, 입자상물질(매연)의 경우 95% 이상의 저감효율을 확인하였고 엔진 성능의 영향을 줄 수 있는 배기가스 압력은 허용배압 기준인 50mbar 이하를 만족하였다. 본 연구를 통해 해상실증 연구의 중요성과 중소형 저속엔진 선박의 질소산화물 및 입자상물질의 동시 저감을 위한 대응 기술로 SCR+DPF 설비 적용 가능성을 확인할 수 있었다.

부압을 이용한 배기 흡입형 매연여과장치에 대한 실험적 연구 (An Experimental Study on the Smoke Filtration System of Suction Type of Exhaustic Gas using Vaccum)

  • 이한성;기시우;고대권
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.16-21
    • /
    • 2011
  • Over the past years, many research works have been carried out to investigate the factors which govern the performance of diesel engine. The air pollutant emission from the diesel engine is still a significant environmental concern in many countries. In the present study, new system of smoke filtration of diesel engine is proposed. This new system is using vacuum equipment and filter for capture smoke. To verification new system experiments are performed at diesel vehicle and engine dynamometer. As a result it is founded that smoke is decreased of 67% at vehicle test and decrease of 45.2% at full load condition of engine dynamometer test.