• Title/Summary/Keyword: Smoke emission

Search Result 247, Processing Time 0.026 seconds

Performances of the Used Frying Oil on a Small Diesel Engine (폐식용유를 이용한 소형 디젤기관의 성능)

  • 김성태;정형길;김영복
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.209-220
    • /
    • 2001
  • This study was carried out to investigate the usability of the used frying oil, which was extracted from soybean, as one of the alternative fuel of a small diesel engine. For the experiment, NO. 2 diesel oil [D], used frying oil [UF], and their volumetric blends were applied and analysis of the properties and compositions of the experimental fuels were conducted. A four cycle diesel engine with single cylinder, water cooling system, maximum output 8.1 ㎾/2,200 rpm was selected and a direct injection chamber and a precombustion chamber were attached alternately. The results obtained were as follows: 1. Engine power (BHP) were increased from 4.13~4.27㎾ to 9.08~9.15㎾ for diesel oil, from 4.05~4.19㎾ to 8.44~8.92㎾ for UF, and from 4.01~4.48㎾ to 8.69~9.16㎾ for blend fuel, as the engine speed increased from 1,000 rpm to 2,200 rpm. The BHP in case of the direct combustion chamber were fluctuated higher than those of the pre-combustion chamber. 2. With the engine speed increased, torque of the engine were increased from 39.50~40.80 N.m to 42.89 N.m, then decreased to 39.44~39.77 N.m for diesel oil, and increased from 38.73~40.04 N.m to 40.12~40.82 N.m then decreased as 36.53~38.76 N.m for UF. Torque of the blend fuels were increased from 38.75~41.76 N.m to 40.47~42.89 N.m then decreased to 37.73~39.78 N.m. There is no significant difference of torque between the type of combustion chambers. 3. The specific fuel consumption of the UF was increased about 20 percent depending on the engine speed variations. And in case of direct injection chamber, about 12 percent lower fuel consumption was observed than that of precombustion chamber. 4. NOx emission of the UF was higher than that of diesel oil at above 1,800rpm of the engine speed. In case of the direct injection chamber, NOx emission was revealed higher about 59 percent than that of the precombustion chamber, depending on the range of the engine speeds. 5. Smoke emission was decreased in case of UF compared with diesel oil on direct injection chamber. When using precombustion chamber smoke emission was a little higher than that of the direct injection chamber were showed at the engine speed range. 6. At all the engine speed range, exhaust gas temperatures were decreased 2~3$^{\circ}C$ for UF used engine compared with those of the diesel oil. The exhaust gas temperature of the direct injection chamber was higher than that of the precombustion chamber by 72$^{\circ}C$. 7. Unburnt materials remained in the cylinder in case of the pre-combustion chamber was smaller and softer than that of the direct combustion chamber. 8. The feasibility of the blend fuel B-1 and B-2 were verified as a direct combustion chamber was attached to the diesel engine, with respect to the power performance of the engine.

  • PDF

Improvement of Emission Performances of a HSDI Diesel Engine with Partial Premixed Compression Ignition Combustion Method (부분 예혼합 압축착화 연소기법을 적용한 HSDI 디젤엔진의 배기 성능 개선)

  • Chung, Jae-Woo;Kang, Jeong-Ho;Kim, Nam-Ho;Min, Kyoung-Doug;Lee, Ki-Hyung;Lee, Jeong-Hoon;Kim, Hyun-Ok;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.88-96
    • /
    • 2008
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. A new concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. This study used a split injection method at a 4 cylinder common-rail direct injection diesel engine in order to apply the partially premixed charge compression ignition combustion method without significantly altering engine specifications And it is investigated that the effects of the injection ratio and SCV(swirl control valve) to emission characteristics. From these tests, soot(g) and NOx(g) emission could be reduced to 40% and 92% compared to base engine performance at specified engine driving conditions(6 points with weight factors) according to application of split injection and SCV(swirl control valve).

The Durability and Exhaust Emission Characteristics of an IDI Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 간접분사식 디젤기관의 내구 및 배기 특성)

  • Ryu, Kyung-Hyun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.115-122
    • /
    • 2006
  • To evaluate the durability characteristics of in-direct injection diesel engine using BDF 20(a blend of 20% biodiesel fuel and 80% diesel fuel in volume), an IDI diesel engine used to commercial vehicle was operated on BDF 20 for 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to investigate the combustion characteristics, engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. From the results, the combustion variations such as the combustion maximum pressure($P_{max}$) and the crank angle at which this maximum pressure occurs(${\Theta}_{Pmax}$) were not appeared during long-time dynamometer testing. Also, BSFC with BDF 20 resulted in lower than with diesel fuel. The peak pressure with BDF 20 was higher than that with diesel fuel due to the oxygen content in BDF. And, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions with a little increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions during the durability test of an IDI diesel engine using BDF 20.

The Combustion Characteristics of Agricultural Diesel Engine using Biodiesel Fuel(Ester of Rice Bran Oil) (바이오디젤유(미강유 에스테르)를 이용한 농업용 디젤기관의 연소 특성)

  • Ryu, Kyung-Hyun;Yun, Yoong-Jin;Oh, Young-Taig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.181-187
    • /
    • 2003
  • Biodiesel fuel as an alternative fuel for diesel engine has a great possibility to solve the problems such as air pollution. It is a domestically produced, renewable fuel that can be manufactured from vegetable oils, used vegetable oils, or animal fats. In this study, the usability of biodiesel fuel derived from rice bran oil as an alternative fuel for diesel engines was investigated in agricultural diesel engine. Emissions were characterized with neat biodiesel fuel and with a blend of biodiesel fuel and conventional diesel fuel. Since the biodiesel fuel includes oxygen of about 11%, it could influence the combustion process strongly. So, the use of biodiesel fuel resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without any increase of oxides of nitrogen. It is concluded that biodiesel fuel can be utilized effectively as a renewable and an environmentally Innocuous fuel for diesel engine.

Effect of Premixed Fuel on the Combustion Characteristics of Premixed Charge Compression Ignition Engine (예혼합 연료에 따른 균일 예혼합 압축 착화 엔진의 연소특성)

  • Hwang, Jin-Woo;Kim, Dae-Sik;Rhyu, Youl;Lee, Ki-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 2003
  • The purpose of this work is to investigate the effect of premixed fuel on the reduction of exhaust emissions in premixed charge compression ignition engine. The premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber. The pre-mixture is ignited by a small amount of diesel fuel directly injected into the cylinder. In the case of gasoline as a premixed fuel of the engine, $NO_x$ and smoke concentration of exhaust emissions were reduced compared with the conventional diesel engine. But in the event of diesel fuel for premixed fuel, the rate of smoke reduction was small compared with the case of gasoline as a premixed fuel. HC and CO emissions were increased at high premixed ratio in the case of two premixed fuels. The combustion characteristics of the engine such as the combustion pressure, the rate of heat release, and other characteristics are compared.

The Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for IDI Diesel Engine (간접분사식 디젤기관에서 바이오디젤연료의 연소 특성)

  • 유경현;윤용진;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.72-78
    • /
    • 2003
  • Recently, lots of researchers have been attracted to develope various alternative fuels and to use renewable fuels as a solution of environmental problems from automobile. The use of biodiesel fuel is an effective way of substituting diesel fuel in the long nun. It is a domestically produced, renewable fuel that can be manufactured from vegetable oils, used vegetable oils, or animal fats. In this study, the usability of biodiesel fuel derived from rice ban oil, one of the oxygenated fuels as an alternative fuel for diesel engines was investigated in IDI diesel engine. Emissions were characterized with neat biodiesel fuel and with a blend of biodiesel fuel and conventional diesel fuel. Since the biodiesel fuel includes oxygen of about 11%, it could influence the combustion process strongly. So, the use of biodiesel fuel resulted in lower emissions of carbon monoxide and smoke emissions with some increase in emissions of oxides of nitrogen. It is concluded that biodiesel fuel can be utilized effectively as a renewable fuel for IDI diesel engine.

Effect of Reentrant Type Bowl Geometry on Combustion Characteristics in Diesel Engine -Effect of Aspect Ratio(Bowl Diameter/Bowl Depth)- (리엔트런트형 연소실 형상이 디젤기관의 연소특성에 미치는 영향 -연소실 형상비(Bowl직경/Bowl깊이)의 효과-)

  • Kwon, J.B.;Kim, H.S.;Kwon, I.K.;Oh, K.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.54-62
    • /
    • 1996
  • Effect of reentrant type bowl geometry on combustion characteristics was investigated in a D.1.diesel engine. The main factor was the aspect ratio (Bowl Diameter/Bowl Depth) of bowl of combustion chamber, and the measured data include the cylinder pressure, engine performance and emissions of the engine using the 4 kinds of the combustion chamber. Experimental results indicate that the effect of dc/H and nozzle protrusion are relatively small and there exists an optimum dc/H according to the combustion conditions. It is also found that the smoke emission is quite sensitive the overall combustion time where the 90 percentage of the combustion heat is released. The smoke mission increases by shortening the 90% combustion time while it decreases by delaying the 90% combustion time.

  • PDF

A Study on the Usability of Biodiesel Fuel Derived from Rice Bran Oil as an Alternative Fuel for IDI Diesel Engine

  • Ryu, Kyunghyun;Oh, Youngtaig
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.310-317
    • /
    • 2003
  • The world is faced with a problem of air pollution due to the exhaust emissions from automobile. Recently, lots of researchers have been attracted to develope various alternative fuels and to use renewable fuels as a solution of these problems. There are many alternative fuels studied in place of diesel fuel made from petroleum. Biodiesel fuel (BDF) is a domestically produced. renewable fuel that can be manufactured from vegetable oils, used vegetable oils, or animal fats. In this study, the usability of BDF, one of the oxygenated fuels as an alternative fuel for diesel engines was investigated in an IDI diesel engine. Emissions were characterized with a neat BDF and with a blend of BDF and conventional diesel fuel. Since the BDF includes oxygen of about 11 %, it could influence the combustion process strongly. Therefore, the use of BDF resulted in lower emissions of carbon monoxide and smoke emissions with some increase in emissions of oxides of nitrogen. It is concluded that BDF can be utilized effectively as a renewable fuel for IDI diesel engines.

Evaluation of Fire Characteristics for Particle-board with Exfoliated Graphite Nanoplatelets Added (탄소재료의 적용 방법에 따른 파티클 보드의 연소 특성)

  • Seo, Hyun Jeong;Jo, Jeong Min;Hwang, Wuk;Lee, Min Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • This study was conducted to evaluate the fire retardant performance of exfoliated graphite nanoplatelets (xGnP) applied for particleboard. This work measured heat release rate(HRR), total heat release(THR) and smoke production rate(SPR) of xGnP added particleboard, using cone calorimeter to assess its fire characteristics according to the KS F ISO 5660-1 standard code. Heat release rates of all specimens treated by xGnP were less than the $200kW/m^2$ for a total experiment period of five minutes. Heat release rates of the specimens coated with xGnP were lower than those of the specimens made by mixing wood particles with xGnP directly. Meanwhile, the total heat release rates of xGnP coated specimen maintained quite lower level than the uncoated so the xGnP coating were effective in improving the fire retardant performance of particleboard. However, the smoke emission peaking problem at the initial combustion period, which was caused by adding base coating materials, should be resolved for further satisfaction as a fire retardant materials.

An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends (압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구)

  • JAESUNG KWON;BEOMSOO KIM;JEONGHYEON YANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.97-104
    • /
    • 2024
  • In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.