• Title/Summary/Keyword: Smoke control system

Search Result 234, Processing Time 0.02 seconds

A Numerical Simulation of Smoke Control in Daegu Subway Stations I. Smoke Control System (대구 지하철역 제연의 문제점과 대책 I. 제연방식)

    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.98-104
    • /
    • 2003
  • Smoke control in il space 10 m${\times}$3 m floor and 5.4 m high around the stairway of a subway station platform was simulated by using FDS to investigate problems of smoke control in Daegue subway stations. Distributions of temperature and smoke particles, and variation of the number of particles with time for a 200 ㎾ polyurethane fire were compared. It was shown that the purge system fails to remove smoke efficiently and that the extraction system has the highest perfor-mance among the three smoke control systems for the given situations. Simply switching the purge system into extraction mode might improve much the smoke removal performance.

A Study on Leaking amount Test of Control Damper - For a Performance Based Designed of Smoke Control System - (제연댐퍼 누설량 시험에 관한 연구 - 제연시스템의 성능위주설계를 위하여 -)

  • Choi, Kyu-Chool;Song, Yun-Suk;Cha, Jong-Ho
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.131-137
    • /
    • 2009
  • This study measured smoke control damper leaking amount of condition of various kinds examination regarding AMCA Standard 500-D-98. As result of study establish because smoke control damper leaking amount performance curve that use tester data of engineering applies right design method of smoke control system and test method design, drawing examination, performance test and do so that right comprehension and performance about skill may be defined. Also user wishes to prove performance of smoke control system and construct smoke control system of reliable performance-based design derive smoke control damper quality improvement continuously selection of smoke control damper by performance judgment of performance curve.

A Study on Appropriateness of Performance Criteria of Smoke Control System for Underground Spaces (I) (지하공간에 대한 제연설비 성능기준의 적정성 고찰(I))

  • Ahn, Chan-Sol;Kim, Heung-Youl;Yoo, Yong-Ho;Jeon, Gyu-Yeop
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.103-106
    • /
    • 2008
  • This study is intended to evaluate the characteristics of smoke spreading and the appropriateness of evacuation time extended by operation of smoke control system during fire within the underground space of the building structured in compliance with the smoke control system performance criteria from the local fire safety standard, which has been currently applied to the buildings in Korea. Using the heat release per unit weight of the combustibles, a numerical analysis both in case of smoke control system in operation and the system not in operation was carried out at the several different shopping malls. From the viewpoint of securing the evacuation time, the results were compared in an attempt to assess the appropriateness of the fire safety criteria.

  • PDF

Design for Pressurizing System about Vestibule by Stack Effect & Engineering Analysis - Focused on Case Study - (굴뚝효과와 공학적분석에 의한 부속실 가압시스템 설계 - 사례를 중심으로 -)

  • Kim, Yong-Kwang
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.145-153
    • /
    • 2009
  • We are generally applicate smoke control only vestibule about special escape staircase, it is one of some smoke control model of NFSC 501A. But there are some point at issue in this system. The smoke control system on supervision field of writer is smoke control only vestibule same as the other resemble field. Writer studied in the concrete to find a solution at this issue, and derived a conclusion the most reasonable system on the field is "same time smoke control for staircase and vestibule" by the engineering analysis considering stack effect.

A Numerical Study on Effective Smoke-Control System of a Rescue Station in a Tunnel Fire (터널내 열차 화재시 효과적인 구난역 제연 설비를 위한 수치 해석 연구)

  • Yang, Sung-Jin;Won, Chan-Shik;Hur, Nahm-Keon;Cha, Chul-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.575-578
    • /
    • 2006
  • In designing smoke-control system of rescue station in train tunnel, a purpose is to prevent a disaster by proposing the jet fan operation together with smoke-control curtain in tunnel fire. This study has investigated the relationship of the Heat Release Rate(HRR) and a adequate ventilation velocity to control the fire propagation in tunnel fire, and has improved the effect of the smoke-control curtain on preventing the flow of pollutants. In this study, Computational Fluid Dynamics(CFD) simulations with ST AR-CD(ver 3.24) were carried out on predicting the fire spreading and the flow of pollutants, considering jet fan operations and effect of smoke-control curtain. Our simulation domain is the full scale model of the 'DAEGWALLYEONG' 1st tunnel. The results represent that ventilation operation can control the fire spreading and pollutants effectively to prevent a disaster.

  • PDF

PERFORMANCE EVALUATION OF PASSENGERS' EVACUATION FOR SMOKE-CONTROL MODES IN A SUBWAY STATION (지하역사 제연모드 승객피난 성능평가)

  • Park, Won-Hee;Chang, Hee-Chul;Jung, Woo-Sung;Lee, Han-Su
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.8-12
    • /
    • 2008
  • Heat/smoke detectors are installed in most subway platforms in Korea to detect fire. Subway platform is divided by smoke-control zones for efficient smoke-control. Once the detectors detect heat or smoke, the smoke-control ventilation system in the platform and concourse is activated according to the smoke-control ventilation mode. Smoke-control mode during fires in Korean subway platforms is that the smoke zones operate by exhausting smoke while other zones in the platform and in the concourse which is the upper floor of the platform operate by supplying air or stopping any ventilation. This study is conducted to evaluate performance of passengers' evacuation for various smoke control modes in the subway station. Distribution of smoke and heat due to fire on the platform is analyzed by using Fire Dynamics Simulator(FDS V 4.06) of NIST. Various smoke-control ventilation modes and locations of fire are considered. Evacuation and movement of passengers within the platform is simulated by building EXODUS V.4.0.

Performance Evaluation of Passengers' Evacuation for Smoke-Control Modes in a Subway Station Based on CFD Results (전산열유체 해석결과를 이용한 지하역사 제연모드 승객피난 성능평가)

  • Park, Won-Hee;Jang, Yong-Jun;Lee, Han-Su;Chang, Hee-Chul;Lee, Duck-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.276-279
    • /
    • 2008
  • Heat/smoke detectors are installed in most subway platforms in Korea to detect fire. Subway platform is divided by smoke-control zones for efficient smoke-control. Once the detectors detect heat or smoke, the smoke-control ventilation system in the platform and concourse is activated according to the smoke-control ventilation mode. Smoke-control mode during fires in Korean subway platforms is that the smoke zones operate by exhausting smoke while other zones in the platform and in the concourse which is the upper floor of the platform operate by supplying air or stopping any ventilation. This study is conducted to evaluate performance of passengers' evacuation for various smoke control modes in the subway station. Distribution of smoke and heat due to fire on the platform is analyzed by using Fire Dynamics Simulator(FDS V 4.06) of NIST. Various smoke-control ventilation modes and locations of fire are considered. Evacuation and movement of passengers within the platform is simulated by buildingEXODUS V 4.0.

  • PDF

A Numerical Study on Smoke Control for Smoke Control Systems and Air Flowrate (제연방식과 풍량에 따른 제연성능의 수치적 연구)

  • 박외철
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.56-61
    • /
    • 2003
  • The smoke removal rate from a room with an opening was investigated for different smoke control systems by using the large eddy simulation turbulence model of the Fire Dynamics Simulator. The decreasing rate of the particles randomly distributed in the 2m X 2m X 2.4m room was com-pared for the ventilation system, pressurization system and extraction system, and for the air flowrate of the ventilation system. Difference in the smoke removal rate among the three smoke control systems was small when the opening was closed. The pressurization system showed less smoke removal rate than the other two systems when the opening existed, and hence is not recommended for subway stations with large openings. It was also shown that a less flowrate in the ventilation system leads to a much longer smoke removal time.

Comparison of the Performance of a Smoke Control System by Pressurization (가압방식에 따른 전실제연설비의 성능 비교 연구)

  • Kwon, Oh-Hyun;Nam, Jun-Seok;Nam, Sang-Ok;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.24-28
    • /
    • 2017
  • This study compared the performance of a smoke control system in the case of a fire with that in the case of non-fire. Single-pressurization in the vestibule, single-pressurization in the stairwell, simultaneous smoke control of the stairwell and vestibule, which was the pressurization of smoke control, were assessed. The result showed that simultaneous smoke control of the stairwell and vestibule can maintain the differential pressure and is least influenced for the evacuation of evacuees. In addition, for the status of smoke control in Korea and the proper pressurization method, these results highlight the necessity of improving the current pressurization method through the survey.

A Study on the Effective Smoke Control Method of Large Volume Space Comparted by Smoke Reservoir Screen (제연경계벽으로 구획된 대형공간의 효과적인 제연방안에 관한 연구)

  • Kim, Tae-Hoon;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • This research examines problem that can happen in partial smoke control method among contiguity area smoke control system through engineering examination and CFD. And the ultimate purpose of this is to secure safety of a person inhabiting at fire department by presenting improvement plan. Now a days, in large space-area such as department store or mega-mall in which mainly applies "Partial Smoke Control Method", air is suppled from adjacent area and smoke is exhausted in fire room. For various reason, however, it is confirmed through simulation that if air is suppled in one direction, this can cause a fatal result to people of fire area because of the difficulty in securing the evacuation time. As an improvement plan, air is supplied at the same time in surroundings to fire department.