• Title/Summary/Keyword: Smoke Removal

Search Result 72, Processing Time 0.018 seconds

Case study on design and construction for cross-connection tunnel using large steel pipe thrust method in soil twin shield tunnels underneath airport (공항하부 토사 병설 쉴드터널에서 대구경 강관추진에 의한 횡갱 설계/시공사례 연구)

  • Ahn, Chang-Yoon;Park, Duhee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.325-337
    • /
    • 2021
  • On the road and rail tunnels, the evacuation pathway and facilities such as smoke-control and fire suppression system are essential in tunnel fire. In the long twin tunnels, the cross-connection tunnel is usually designed to evacuate from the tunnel where the fire broke out to the other tunnel. In twin shield tunnels, the segment lining has to be demolished to construct the cross-connection tunnel. Considering the modern shield TBM is mostly the closed chamber type, the exposure of underground soil induced by removal of steel segment lining is the most danger construction step in the shield tunnel construction. This case study introduces the excavation method using the thrust of large steel pipe and reviews the measured data after the construction. The large steel pipe thrust method for the cross-connection tunnel can stabilize the excavated face with the two mechanisms. Firstly, the soil in front of excavated face is cylindrically pre-supported by the large steel pipe. Secondly, the excavated face is supported by the plugging effect caused by the soil pressed into the steel pipe. It was reviewed that the large steel pipe thrust method in the cross-connection tunnel is enough to secure the construct ability and stability in soil from the measurement results about the deformation and stress of steel pipe.

Numerical Analysis on Effect of Stemming Condition in Mine Ventilation Shaft Blasting (광산 통기수갱발파에서 전색조건이 발파효율에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Jun-ha;Kim, Jung-gyu;Jung, Seung-won;Ko, Young-hun;Baluch, Khaqan;Kim, Jong-gwan
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.15-23
    • /
    • 2021
  • Ventilation shafts are pathways in mines and tunnels for the removal of dust or smoke during underground space construction and operation. In mines, blasting with long blast holes is preferred for the excavation of a ventilation shaft in the 10~20m long crown pillar section. In this case, the bottom part of the blast hole is completely drilled in order to determine the drilling error, and this causes a problem of lowering the explosive charge and blasting efficiency. It is possible to solve the problem of explosive loading and to increase the blast efficiency by covering the curb of the blasthole by using stemming material. In this study, simulations for the blasting of a ventilation shaft were performed with various stemming lengths and the blasthole diameters(45, 76mm) using AUTODYN 2D SPH(Smooth particle hydrodynamics) analysis technique. Also the optimal bottom stemming column was derived by checking the size of the boulder and burden line according to blasting. Analysis result, blasting efficiency is lessened in case of stemming length less than 30cm and the optimal length of the stemming material should be 30cm or higher to achieve high efficiency of blasting.