• Title/Summary/Keyword: Smoke Evacuation

Search Result 213, Processing Time 0.023 seconds

A Study of Smoke Exhaust Facility Operation of Subway Platform with Installation of Platform Screen Door (승강장 스크린도어 설치에 따른 배연설비운영에 대한 연구)

  • Rie, Dong-Ho;Ko, Jae-Woong;Kim, Ha-Young
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.35-40
    • /
    • 2006
  • A study on fire phenomena in a subway transit mass station has been carried out as a part of disaster prevention plan at the subway station. The ventilation facilities installed in both the platform and the trackway are designed to convert into a smoke exhaust system in emergency situation, creating such an environment as necessary for evacuation. 3 dimensional Numerical Simulations based on the CFD are carried out using a simulation tool, Fire Dynamic Simulator. Additionally, four different vent modes are made and performances are compared with the original design mode and each other to find better operation of vents at both the platform and the trackway in case of fire. From the result, an vent operational characteristics under the condition of installed PSD is clarified for the effective smoke and heat removal from the platform area compared with non installed PSD.

The Performance of the Combined Operation of Sprinkler and Smoke Curtain for Smoke Control in the Sloped Stairway Corridor (경사통로로 전파되는 연기에 대한 스프링클러와 제연커텐의 통합제연성능)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.1-12
    • /
    • 2006
  • In this study, CFD computer simulations by FDS are carried out in order to confirm the performance of the combined operation of both sprinkler system and smoke curtain of 0.54 m depth installed for cooling and blocking the smoke which propagates beneath the sloped ceiling of a stairway corridor of which dimensions are 17.92 m long, 4.00 m wide, and 6.12 m high. It is shown that the response time of sprinklers decreases with fire size and it increases more about 1.1 second in case without smoke curtain than in case with smoke curtain, that the time of smoke transport from the fire source to the stairway outlet decreases considerably with fire size, and that the delay effect of smoke transport is not related to the sprinkler system, whether it is operated or not. This study shows that the combined operation of both sprinkler system and smoke curtain is very effective in smoke cooling, but it is a little for effect on smoke blockage. Although the hazard of skin burn due to radiative heat flux from hot smoke layer is decreased by spray cooling effect, the hazard of smoke suffocation and the weakening of visibility is increased by smoke downdrag and the turbulence of smoke-air mixing due to water spray. These conditions may result in preventing occupants from going out of the stairway during evacuation.

A Study on the Development of a Low-cost Device for Measuring the Optical Smoke Density (광학적 연기밀도 측정을 위한 저가형 장치의 개발에 관한 연구)

  • Kim, Bong-Jun;Cho, Jae-Ho;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.81-88
    • /
    • 2015
  • A low-cost device using the light-extinction method was developed to measure the optical smoke density in various fire experiments in the present study. The relative measurement accuracy of low-cost device was evaluated through the comparison of optical density measured by a high-cost standard device consisting of He-Ne laser, photo detector and various optical components. The low-cost device was composed of laser module, photocell and acrylic board. From the experiments using a smoke generator can be easily adjusted the smoke concentration, it was found that the low-cost device could measure the smoke density within the range of ${\pm}10%$, compared to the standard device. In addition, the reliability of low-cost device was also confirmed in the experiment using a polyethylene flame. Finally, it is expected that the low-cost device developed with real-time measurement and simple installation for measuring the smoke density will be used instead of the high-cost standard device.

Smoke Control Experiment of a Very Deep Underground Station Where Platform Screens Doors are Installed - Analysis on Smoke Control Performance by Fans equipped in Tunnel (스크린도어가 설치된 대심도 지하역사의 제연 실험 - 터널 송풍기에 의한 제연의 효과 분석)

  • Park, Won-Hee;Kim, Chang-Yong;Cho, Youngmin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.9
    • /
    • pp.721-736
    • /
    • 2019
  • In this paper, the behavior of the fire smoke due to the operation of the ventilation systems when the fire occurred in the underground station (6 basement floors) and the tunnel at the great depth was measured. Fire smoke was generated by using a smoke generator which realized heat buoyancy effect by using hot air blower. The two locations of the fire were selected on the platform and on the platform of the tunnel located outside the screen door. A ventilation mode is generally used in which smoke is exhausted through a vent hole provided in a platform when a platform fire occurs. The tests were performed by operating the exhaust through the ventilation holes of the tunnel part located at both ends of the platform. The smoke density and the wind speed/velocity were measured at various positions, and the videos were taken to analyze the movement and smoke of the smoke. In both cases for fire inside the platform and in the railway tunnel, due to the ventilation mode operation of the fan for the platform and the exhaust of the fans in the tunnel smoke were well exhausted and the smoke propagation to the area near the smoke zone was suppressed. The smoke-control mode, which is applied to both fans for the platform and fans for in the tunnel at both ends of the platform, can provide a safer evacuation environment to the passengers from the fire smoke when the platform fire or fire train stops.

Fundamental Study on Algorithm Development for Prediction of Smoke Spread Distance Based on Deep Learning (딥러닝 기반의 연기 확산거리 예측을 위한 알고리즘 개발 기초연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • This is a basic study on the development of deep learning-based algorithms to detect smoke before the smoke detector operates in the event of a ship fire, analyze and utilize the detected data, and support fire suppression and evacuation activities by predicting the spread of smoke before it spreads to remote areas. Proposed algorithms were reviewed in accordance with the following procedures. As a first step, smoke images obtained through fire simulation were applied to the YOLO (You Only Look Once) model, which is a deep learning-based object detection algorithm. The mean average precision (mAP) of the trained YOLO model was measured to be 98.71%, and smoke was detected at a processing speed of 9 frames per second (FPS). The second step was to estimate the spread of smoke using the coordinates of the boundary box, from which was utilized to extract the smoke geometry from YOLO. This smoke geometry was then applied to the time series prediction algorithm, long short-term memory (LSTM). As a result, smoke spread data obtained from the coordinates of the boundary box between the estimated fire occurrence and 30 s were entered into the LSTM learning model to predict smoke spread data from 31 s to 90 s in the smoke image of a fast fire obtained from fire simulation. The average square root error between the estimated spread of smoke and its predicted value was 2.74.

A study on evacuation characteristic by cross-sectional areas and smoke control velocity at railway tunnel fire (철도터널 화재시 단면적별 제연풍속에 따른 대피특성 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho;Kim, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.215-226
    • /
    • 2015
  • In this study, with variables the cross section area ($97m^2$, $58m^2$, $38m^2$) and the wind velocity(0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 m/s), the time of getting off train dependent on the way of itself and the width of the evacuation route was analyzed, and also fire and evacuation characteristics is reviewed by cross section area of each wind velocity. As the result, if cross section become smaller, the density of harmful gases in the tunnel increased more than the ratio of decreasing cross section area. In the case of small cross sectional area, the surrounding environment from initial fire is indicated to exceed the limit criteria suggested in performance based design. In the analysis of effective evacuation time for evacuation characteristics, the effective evacuation time was the shortest in the case of evaluating effective evacuation time by the visibility. Also, there was significant difference between the effective evacuation time on the basis of performance based evaluation and the effective evacuation time obtained by analyzing FED (Fractional effective dose), one of the analysis method obtaining the point that deaths occur, against harmful gases.

A Study on the Efficiency of Evacuation Exterior Stairs in High-rise Buildings (고층빌딩에서 옥외피난계단의 효용성에 관한 연구)

  • Choi, Kyu-Chool
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2009
  • Article 36 of the Building Code Enforcement Ordinance requires that an exterior evacuation stairs be installed for the buildings of three stories and over with cultural facilities or gathering places which have over $1,000\;m^2$ floor area of public performance halls or recreational facilities. The concentration of population together with the increase of high-rise buildings in cities call for various precautionary measures to be taken against human disasters. For the past ten years high-rise buildings showed 85% of increase, marking a steep rise. This increase of high-rise buildings may lead to human disasters in urban areas and, in case of fire breakout, may cause great loss of human lives and property damages. The most difficult fire-fighting activities in high-rise building fires are those of evacuation. Because smoke spreads through the upper floors, the securement of evacuation route in high-rise buildings may be the only way to minimize loss of lives. In high-rise buildings exterior escape stairs are necessary because it is difficult to secure evacuation route with only direct stairs or interior stairs. The Building Code now in force provides insignificant coverage on the exterior evacuation route installment and therefore becomes an inadequate means for evacuation route securement in high-rise building fires. To compensate for this inadequacy the Building Code should be revised to include a mandatory clause that an exterior evacuation stairs be established for the buildings of ten stories and over which can be categorized into high-rise building group.

A Study on the Inflow Velocity Reduction Measures in Case of Fire Great Depth Underground Double-Deck Tunnel (대심도 복층터널 화재 시 유입풍속 저감방안 연구)

  • Yang, Yong-Won;Moon, Jung-Joo;Shin, Tae-Gyun
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Recently, frequent traffic congestion has occurred in domestic urban roads. As a solution for downtown traffic congestion in domestic urban roads, plans for great depth underground double-deck tunnels have been made. Great depth underground double-deck tunnels that have been planned for passenger cars, has the structure of a network type; the entry of vehicles is carried out in the underground space. In these network great depth underground double-deck tunnels, the cross section and the height of the tunnel are smaller than the general road tunnel, and the smoke of a fire will propagate faster than the evacuation of tunnel passengers by the action of the traffic-ventilation and casualties are expected. Therefore, in the present study, an attempt was made to prevent the delay system for fire smoke diffusion at the time of a fire in a domestic network great depth underground double-deck tunnel according to the area of the tunnel block during the operation of the delay system for fire smoke diffusion to analyze the effects of reducing the inflow velocity. When the area of the tunnel block was not less than 50%, the effect of reducing about 21% of the wind speed acting on the tunnel was significant. If the area is more than 50%, the diffusion rate of fire smoke was reduced by approximately 21%, which will be useful for a safe evacuation.

Analyses of Scenarios Based on a Leakage of Highly Compressed Air and Fire Anticipated in CAES (Compressed Air Energy Storage) Facility (압축공기에너지저장 시설에서 발생 가능한 압축공기 유출 및 화재 시나리오 분석)

  • Yoon, Yong-Kyun;Ju, Eun-Hye
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.568-576
    • /
    • 2015
  • In this study, scenarios based on the leakage of highly compressed air and fire occurrence turned out to be high risks in an operation stage of CAES facility were constructed and estimated. By combining Bernoulli equation with momentum equation, an expression to calculate an impact force of a jet flow of compressed air was derived. An impact force was found to be proportional to the square of diameter of fracture and the pressure of compressed air. Four types of fire scenarios were composed to evaluate an effects that seasonal change and location of fire source have on the spread behavior of smoke. Smoke from the fire ignited in the vicinity of CAES opening descended more quickly below the limit line of breathing than one from the fire occurred 10 m away from CAES opening, which is expected to occur due to a propagation of wave front of smoke. It was shown that a rate of smoke spread of the winter fire is faster than one of the summer fire and smoke from the winter fire spreads farther than one of the summer fire, which are dependent on the direction of air flow into access opening. Evacuation simulation indicated that the required safe evacuation time(RSET) of the summer and winter fires are 262, 670 s each.

A Study on Reduction Method of Stack Effect at Stairwell of High-Rise Building (고층건물 피난계단에서의 연돌효과 저감방안 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.14-20
    • /
    • 2011
  • As the height of the building increases, the stack effect in stairwell that is main facilities for evacuation becomes stronger. While the pressure rise in stairwell causes difficulties on opening the door for evacuation and has effect on smoke control system, reduction of stack effect will be necessary for providing more safe evacuation environment. The field experiments on pressure field in high-rise building are carried out to present reduction method of stack effect and the numerical analyses using network model are proceeded to design quantitatively the reduction method. As the air flow supplied from outside in lower stair and exhausted to outside in upper stair is formed in stairwell, the stack effect in stairwell is expected to be decreased.