• Title/Summary/Keyword: Smartphone Camera

Search Result 200, Processing Time 0.019 seconds

Active 3D Shape Acquisition on a Smartphone (스마트폰에서의 능동적 3차원 형상 취득 기법)

  • Won, Jae-Hyun;Yoo, Jin-Woo;Park, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.27-34
    • /
    • 2011
  • In this paper, we propose an active 3D shape acquisition method based on photometric stereo using camera and flash on a smartphone. Two smartphones are used as the master and slave, in which the slave projects illumination from different locations while the master captures the images and processes photometric stereo algorithm to reconstruct 3D shape. In order to reduce the error, the smartphone's camera is calibrated to overcome the effect of the lens distortion and nonlinear camera sensor response. We apply 5-point algorithm to estimate the pose between smartphone cameras and then estimate lighting direction vector to run the photometric stereo algorithm. Experimental result shows that the proposed system enables us to use smartphone as a 3D camera with low cost and high quality.

RGB-LED-based Optical Camera Communication using Multilevel Variable Pulse Position Modulation for Healthcare Applications

  • Rachim, Vega Pradana;An, Jinyoung;Pham, Quan Ngoc;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • In this paper, a 32-variable pulse position modulation (32-VPPM) scheme is proposed to support a red-green-blue light-emitting-diode (RGB-LED)-based optical camera communication (OCC) system. Our proposed modulation scheme is designed to enhance the OCC data transmission rate, which is targeted for the wearable biomedical data monitoring system. The OCC technology has been utilized as an alternative solution to the radio frequency (RF) wireless system for long-term self-healthcare monitoring. Different biomedical signals, such as electrocardiograms, photoplethysmograms, and respiration signals are being monitored and transmitted wirelessly from the wearable biomedical device to the smartphone receiver. A common 30 frames per second (fps) smartphone camera with a CMOS image sensor is used to record a transmitted optical signal. Moreover, the overall proposed system architecture, modulation scheme, and data demodulation are discussed in this paper. The experimental result shows that the proposed system is able to achieve > 9 kbps using only a common smartphone camera receiver.

A Study on Improvement Technology of Image Resolution using Mobile Camera (이동 카메라를 이용한 사진 해상도 향상 기술 연구)

  • Buri Kim;Jongtaek Oh
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.93-98
    • /
    • 2023
  • Recently, as the size of display devices tends to increase and taking pictures with smart phones has become commonplace, the need for taking high-resolution pictures with smart phones is increasing. However, when the lens size of a camera is limited, such as in a smartphone, there is a physical limit to increasing the resolution of a photo. This paper is about a technique for increasing the resolution of a picture even when using a small-sized lens like a smartphone camera. It is to take multiple pictures while moving the smartphone, and to increase the resolution by combining these pictures into one picture. First of all, two pictures were taken while moving the smartphone horizontally for the 2D picture. Processes such as camera matrix estimation, and homograph inverse transformation were performed using OpenCV, and the resolution was improved by synthesizing one picture. It was confirmed that the resolution was improved in parts such as oblique lines or arcs on several test pictures.

An alternative method for smartphone input using AR markers

  • Kang, Yuna;Han, Soonhung
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.153-160
    • /
    • 2014
  • As smartphones came into wide use recently, it has become increasingly popular not only among young people, but among middle-aged people as well. Most smartphones adopt capacitive full touch screen, so touch commands are made by fingers unlike the PDAs in the past that use touch pens. In this case, a significant portion of the smartphone's screen is blocked by the finger so it is impossible to see the screens around the finger touching the screen; this causes difficulties in making precise inputs. To solve this problem, this research proposes a method of using simple AR markers to improve the interface of smartphones. A marker is placed in front of the smartphone camera. Then, the camera image of the marker is analyzed to determine the position of the marker as the position of the mouse cursor. This method can enable click, double-click, drag-and-drop used in PCs as well as touch, slide, long-touch-input in smartphones. Through this research, smartphone inputs can be made more precise and simple, and show the possibility of the application of a new concept of smartphone interface.

Improvement of Smartphone Interface Using AR Marker (AR 마커를 이용한 스마트폰 인터페이스의 개선)

  • Kang, Yun-A;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.361-369
    • /
    • 2011
  • As smartphones came into wide use recently, it has become increasingly popular not only among young people, but middle-aged people as well. Most smartphones use capacitive full touch screen, so touch commands are made by fingers unlike the PDAs in the past that use touch pens. In this case, a significant portion of the smartphone's screen is blocked by the finger so it is impossible to see the screens around the finger touching the screen, and difficulty occurs in precise control used for small buttons such as qwerty keyboard. To solve this problem, this research proposes a method of using simple AR markers to improve the interface of smartphones. Sticker-form marker is attached to fingernails and placed in front of the smartphone camera Then, the camera image of the marker is analyzed to determine the orientation of the marker to perceive as onRelease() or onPress() of the mouse depending on the marker's angle of rotation, and use its position as the position of the mouse cursor. This method can enable click, double-click, drag-and-drop used in PCs as well as touch, slide, long-touch-input in smartphones. Through this research, smartphone inputs can be made more precise and simple, and show the possibility of the application of a new concept of smartphone interface.

Effects of selfie semantic network analysis and AR camera app use on appearance satisfaction and self-esteem (셀피의 의미연결망 분석과 AR 카메라 앱 사용이 외모만족도와 자아존중감에 미치는 영향)

  • Lee, Hyun-Jung
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.5
    • /
    • pp.766-778
    • /
    • 2022
  • Image-oriented information is becoming increasingly important on social networking services (SNS); the background of this trend is the popularity of selfies. Currently, camera applications using augmented reality (AR) and artificial intelligence (AI) technologies are gaining traction. An AR camera app is a smartphone application that converts selfies into various interesting forms using filters. In this study, we investigated the change of keywords according to the time flow of selfies in Goolgle News articles through semantic network analysis. Additionally, we examined the effects of using an AR camera app on appearance satisfaction and self-esteem when taking a selfie. Semantic network analysis revealed that in 2013, postings of specific people were the most prominent selfie-related keywords. In 2019, keywords appeared regarding the launch of a new smartphone with a rear-facing camera for selfies; in 2020, keywords related to communication through selfies appeared. As a result of examining the effect of the degree of use of the AR camera app on appearance satisfaction, it was found that the higher the degree of use, the higher the user's interest in appearance. As a result of examining the effect of the degree of use of the AR camera app on self-esteem, it was found that the higher the degree of use, the higher the user's negative self-esteem.

A Study on Estimating Skill of Smartphone Camera Position using Essential Matrix (필수 행렬을 이용한 카메라 이동 위치 추정 기술 연구)

  • Oh, Jongtaek;Kim, Hogyeom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.143-148
    • /
    • 2022
  • It is very important for metaverse, mobile robot, and user location services to analyze the images continuously taken using a mobile smartphone or robot's monocular camera to estimate the camera's location. So far, PnP-related techniques have been applied to calculate the position. In this paper, the camera's moving direction is obtained using the essential matrix in the epipolar geometry applied to successive images, and the camera's continuous moving position is calculated through geometrical equations. A new estimation method was proposed, and its accuracy was verified through simulation. This method is completely different from the existing method and has a feature that it can be applied even if there is only one or more matching feature points in two or more images.

A comparison of using a smartphone versus a surgical microscope for microsurgical anastomosis in a non-living model

  • Jianmongkol, Surut;Vinitpairot, Chaiyos;Thitiworakarn, Navapong;Wattanakamolchai, Settapon
    • Archives of Plastic Surgery
    • /
    • v.49 no.1
    • /
    • pp.121-126
    • /
    • 2022
  • Background Although they may not replace standard training methods that use surgical microscopes, smartphones equipped with high-resolution screens and high-definition cameras are an attractive alternative for practicing microsurgical skills. They are ubiquitous, simple to operate, and inexpensive. This study compared anastomoses of chicken femoral vessels using a smartphone camera versus a standard operative microscope. Methods Forty anastomoses of non-living chicken femoral vessels were divided into four groups. A resident and an experienced microsurgeon performed anastomoses of femoral chicken vessels with 8-0 and 10-0 sutures, using a smartphone camera and a surgical microscope. The time to complete the anastomosis and the number of anastomosis errors were compared using the Mann-Whitney U test. Results The time taken to perform an anastomosis by the experienced microsurgeon was significantly longer when using the smartphone (median: 32.5 minutes vs. 20 minutes, P<0.001). The resident completed the anastomoses with both types of equipment without a significant difference in the operative times. When using a smartphone, the operation times were not significantly different between the resident and the experienced microsurgeon (P=0.238). The resident showed non-significant differences in operation time and the number of errors when using a smartphone or an operative microscope (P=1.000 and P=0.065, respectively). Conclusions Microsurgical practice with non-living chicken femoral vessels can be performed with a smartphone, though it can take longer than with an operative microscope for experienced microsurgeons. The resident may also experience frustration and tend to make more anastomosis errors when using a smartphone versus an operative microscope.

Design of Measurement Algoritms in the Smart CamRuler (스마트 CamRuler 계측 알고리즘 설계)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.149-156
    • /
    • 2013
  • With a rapid growth of smartphone technologies, various applications are developed and diffused actively nowadays. Especially, interesting applications using camera module in a smartphone are developed continuously, mobile users are able to use various useful mobile services in humdrum life. In this paper, we design and implement measurement algorithms which precisely measure the object taken by the camera module in a smartphone. We use 3-axis gyro accelerometer sensor in a smartphone to get the distance, incline and rotation angle in a real time when we take a picture of shooting object and can obtain precise size of it in the picture image. The measurement algorithms proposed in this paper are analyzed and evaluated by a simulation study.

Development of a Photoplethysmographic method using a CMOS image sensor for Smartphone (스마트폰의 CMOS 영상센서를 이용한 광용적맥파 측정방법 개발)

  • Kim, Ho Chul;Jung, Wonsik;Lee, Kwonhee;Nam, Ki Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4021-4030
    • /
    • 2015
  • Pulse wave is the physiological responses through the autonomic nervous system such as ECG. It is relatively convenient because it can measure the signal just by applying a sensor on a finger. So, it can be usefully employed in the field of U-Healthcare. The objects of this study are acquiring the PPG (Photoplethysmography) one of the way of measuring the pulse waves in non-invasive way using the CMOS image sensor on a smartphone camera, developing the portable system judging stressful or not, and confirming the applicability in the field of u-Healthcare. PPG was acquired by using image data from smartphone camera without separate sensors and analyzed. Also, with that image signal data, HRV (Heart Rate Variability) and stress index were offered users by just using smartphone without separate host equipment. In addition, the reliability and accuracy of acquired data were improved by developing additional hardware device. From these experiments, we can confirm that measuring heart rate through the PPG, and the stress index for analysis the stress degree using the image of a smartphone camera are possible. In this study, we used a smartphone camera, not commercialized product or standardized sensor, so it has low resolution than those of using commercialized external sensor. However, despite this disadvantage, it can be usefully employed as the u-Healthcare device because it can obtain the promising data by developing additional external device for improvement reliability of result and optimization algorithm.