• Title/Summary/Keyword: Smart-UAV

Search Result 221, Processing Time 0.026 seconds

A Study on Multi Fault Detection for Turbo Shaft Engine Components of UAV Using Neural Network Algorithms

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.187-194
    • /
    • 2008
  • Because the types and severities of most engine faults are various and complex, it is not easy that the conventional model based fault detection approach like the GPA(Gas Path Analysis) method can monitor all engine fault conditions. Therefore this study proposed newly a diagnostic algorithm for isolating and diagnosing effectively the faulted components of the smart UAV propulsion system, which has been developed by KARI(Korea Aerospace Research Institute), using the fuzzy logic and the neural network algorithms. A precise performance model should be needed to perform the model-based diagnostics. The based engine performance model was developed using SIMULINK. For the work and mass flow matching between components of the steady-state simulation, the state-flow library was applied. The proposed steady-state performance model can simulate off-design point performance at various flight conditions and part loads, and in order to evaluate the steady-state performance model their simulation results were compared with manufacturer's performance deck data. According to comparison results, it was confirm that the steady-state model well agreed with the deck data within 3% in all flight envelop. The diagnosis procedure of the proposed diagnostic system has the following steps. Firstly after obtaining database of fault patterns through performance simulation, then secondly the diagnostic system was trained by the FFBP networks. Thirdly after analyzing the trend of the measuring parameters due to fault patterns, then fourthly faulted components were isolated using the fuzzy logic. Finally magnitudes of the detected faults were obtained by the trained neural networks. Because the detected faults have almost same as degradation values of the implanted fault pattern, it was confirmed that the proposed diagnostic system can detect well the engine faults.

  • PDF

A Study on Performace Evaluation of ITS Detectors using UAV (UAV를 활용한 ITS검지기 성능평가에 관한 연구)

  • Kang, Tae-Gyung;Lee, Si-Bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.111-120
    • /
    • 2018
  • This study focuses on utilizing drones for performance evaluation of ITS detectors and analyzing economic feasibility when performance evaluation is conducted by the traffic management center's own personnel using drones. The study sites were selected from DSRC, video detector, and radar detector locations and drone filming was conducted to obtain travel speed, queue length, and delay time and compare with the detector data. It was shown that drones can be very effectively used to evaluate performance of major ITS detectors such as DSRC and video detectors. In addition, it was analyzed that a drone operated by the traffic management center's own personnel provides very economic solution for ITS detector performance evaluation when compared to consignment by external agencies.

A Study on Automatic Calculation of Earth-volume Using 3D Model of B-Rep Solid Structure (B-Rep Solid 구조의 3차원 모델을 이용한 토공량 자동 산정에 관한 연구)

  • Kim, Jong Nam;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.403-412
    • /
    • 2022
  • As the 4th industrial revolution is in full swing and next-generation ICT(Information & Communications Technology) convergence technology is being developed, various smart construction technologies are being rapidly introduced in the construction field to respond to technological changes. In particular, since the earth-volume calculation process for site design accounts for a large part of the design cost at the construction site, related researches are being actively conducted to improve the efficiency of the process and accurately calculate the earth-volume. The purpose of this study is to present a method for quickly constructing the topography of a construction site in 3D and efficiently calculating earth-volume using the results. For this purpose, the construction site was constructed as a 3D realistic model using large-scale aerial photos obtained from UAV(Unmanned Aerial Vehicle). At this time, since the constructed 3D realistic model has a surface model structure in which volume calculation is impossible, the structure was converted into a 3D solid model to enable volume calculation. And we devised a methodology to calculate earth-volume based on CAD(Computer-Aided Design and Drafting) using the converted solid model. Automatically calculating earth-volume from the solid model by applying the method. As a result, It was possible to confirm a relative deviation of 1.52% from the calculated earth-volume from the existing survey results. In addition, as a result of comparative analysis of the process time required for each method, it was confirmed that the time required is reduced of 60%. The technique presented in this study is expected to be utilized as a technology for smart construction management, such as periodic site monitoring throughout the entire construction process, as well as cost reduction for earth-volume calculation.

Wireless Power Harvesting Techniques to Improve Time to Fly of Drone (무인항공기 비행시간 향상을 위한 무선 전력획득 기술)

  • Nam, Kyu-hyun;Jung, Won-jae;Jang, Jong-eun;Chae, Hyung-il;Park, Jun-seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1574-1579
    • /
    • 2016
  • This paper presents a self-powered sensor-node scheme using a RF wireless power harvesting techniques for improve drone time of flight. Sensor-node that is proposed is turned when two conditions satisfy: The one is input RF ID data from master-node should be same with sensor-node's ID, and the other one is RF wireless power harvesting system is turned on by hysteresis switch. In this paper, master-node's output is 26 dBm at 263 MHz. Maximum RF to DC power conversion efficiency is about 55% at 4-6 dBm input power condition (2 meter from master-node). The maximum RF wireless power harvesting range is about 13 meter form master-node. And power consumption of the sensor-node's load elements such as transmitter, MCU and temperature sensors is approximately average 15 mA at 5.0 V for 10 msec.

A Study on how to use drones According to Domestic Coastal Safety System limitations (국내 연안 안전 체계 한계에 따른 드론의 활용방안)

  • Kim, Seung-Han;Kim, Hyo-Joong;Kim, Hyo-Kwan;Cho, So-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.118-127
    • /
    • 2021
  • In spite of various safety measures, coastal safety accidents continue to occur, so this study focused on using drones as countermeasures. Municipalities that already have coasts have begun operating unmanned multicopters for coastal safety management. In particular, by connecting an unmanned multi-copter to the currently applied smart city safety net system, it is possible to transmit real-time images of the scene in case of emergency in the coastal area to the local government safety information center. It is also expected to contribute significantly to strengthening safety management in coastal waters through a more rapid response to safety accidents. Therefore, in this paper, we propose the use of drones as an alternative to the limitations of the domestic coastal safety system by investigating the state of coastal safety accidents and analyzing the state of domestic coastal safety systems. In addition, it is expected to be a key breakthrough in the coastal area safety system by proposing a model linking the Korean K-Drone system.

Rapid Structural Safety Evaluation Method of Buildings using Unmanned Aerial Vehicle (SMART SKY EYE) (무인비행체를 이용한 건축물의 긴급 위험도 평가 기술 (SMART SKY EYE) 개발)

  • Jeong, Dong-Min;Lee, Jong-Hoon;Lee, Da-Hye;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.2
    • /
    • pp.3-11
    • /
    • 2019
  • The recent earthquake of Pohang (M5.4) and the Gyeongju earthquake (M5.8) suggested the possibility of a strong earthquake in Korea and reminded us that the Korea is no longer an earthquake-safe zone. In the disaster recovery stage in a disaster like an earthquake, the investigation of the damage situation and the safety assessment of the building serve to provide important information for the initial action such as establishment of the recovery strategy and rescue of the survivor. However, the research that depends on manpower can not cope with the difficulty of processing a large number of doses in a short time, and the expertise of the manpower must be taken into consideration, which may result in delayed initial action. In this study, we propose an rapid safety evaluation technique of building using unmanned aerial vehicle which evaluates the performance and safety of buildings by integrating conventional safety inspection method with unmanned aerial vehicle technology and developed evaluation method of each evaluation factor. In order to verify this, the buildings damaged by the earthquake in Pohang were checked and compared using this system. The results are consistent with the results of the existing emergency earthquake risk assessment. As a result, the possibility of checking the emergency safety using the unmanned aerial vehicle for the damaged structures in case of a large-scale disaster such as an earthquake was confirmed.

4인승 선미익 경항공기 비행하중 해석

  • Shin, Jeong-Woo;Kim, Tae-Uk;Lee, Sang-Wook;Shim, Jae-Yeul;Hwang, In-Hee
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Civil aviation regulation such as FAR and loads analysis procedure based on this was explained, and loads analysis procedure and results for Smart UAV was presented for application case. For loads analysis, applicable regulations and loads conditions should be prepared in advance, and modeling for aerodynamics, weight, and structure should be performed. Panel method is usually adopted for aircraft loads analysis to obtain aerodynamic loads. In this study, ARGON which is multidisciplinary fixed wing aircraft design software co-developed by KARI and TsAGI was used for loads analysis. ARGON can be utilized for flutter and stress analysis as well as for flight and ground loads analysis. In this paper, flight loads analysis of 4-seater canard airplane was performed with ARGON and that results were presented.

  • PDF

GPS/INS Integration using Fuzzy-based Kalman Filtering

  • Lim, Jung-Hyun;Ju, Gwang-Hyeok;Yoo, Chang-Sun;Hong, Sung-Kyung;Kwon, Tae-Yong;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.984-989
    • /
    • 2003
  • The integrated global position system (GPS) and inertial navigation system (INS) has been considered as a cost-effective way of providing an accurate and reliable navigation system for civil and military system. Even the integration of a navigation sensor as a supporting device requires the development of non-traditional approaches and algorithms. The objective of this paper is to assess the feasibility of integrated with GPS and INS information, to provide the navigation capability for long term accuracy of the integrated system. Advanced algorithms are used to integrate the GPS and INS sensor data. That is fuzzy inference system based Weighted Extended Kalman Filter(FWEKF) algorithm INS signal corrections to provided an accurate navigation system of the integrated GPS and INS. Repeatedly, these include INS error, calculated platform corrections using GPS outputs, velocity corrections, position correction and error model estimation for prediction. Therefore, the paper introduces the newly developed technology which is aimed at achieving high accuracy results with integrated system. Finally, in this paper are given the results of simulation tests of the integrated system and the results show very good performance

  • PDF

Redundancy Management for a Duplex FBW Flight Control System (2중으로 다중화된 FBW/ FCS의 다중화 관리)

  • Nam, Yoon-Su;Hong, Sung-Kyung;Yoo, Chang-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.46-52
    • /
    • 2004
  • A design methodology of the redundancy management for a duplex FBW flight control system is introduced. A statistical analysis is applied to determine two design parameters in CCM(Cross Channel Monitor), threshold and persistence count. An analytic redundancy, which is implemented using a Kalman filtering algorithm is considered. The application of an analytic redundancy to the FCS design of the smart UAV has several advantages of increasing the aircraft's survivability and breaking the tie-condition for a duplex FCS. All the redundancy management algorithms are verified through the numeric simulation for the flight dynamics of the XV-15 tilt rotor.

Installed Performance Analysis of a Turboshaft Engine Considering Inlet and Exhaust Losses Estimated by Cfd Technique (CFD 기법에 의해 예측된 흡입구 및 배기구 손실을 고려한 터보축 엔진의 장착성능에 관한연구)

  • Kong Chang-Duk;Owino George Omollo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.106-109
    • /
    • 2006
  • The purpose of this study is to analyze the installed performance of the PW206C turbo shaft engine used in the development of the smart UAV(Unmanned Ariel Vehicle) by KARI(Korean Aerospace Research Institute). It mainly aims to investigate performance behavior at installed conditions using both inlet and exhaust losses generated by CFD analysis of the ducts. The ways employed to be able to analyze the performance extensively were mainly rallied out by performing design point analysis of the engine where the performance simulation results from the commercial program 'GASTURB 9' used for simulation were used as inlet boundary condition for the ducts in CFD program The use of CFD tool involve modeling of the ducts to conform with the stipulated shape and sizes as defined by KARI with a grid density that allows reasonable flow characteristics applicable to aircraft components. Respective values of Shaft horse power obtained by varying flight Mach number, Gas generator RPM and Altitude considering several losses inclusive of those estimated by use of CFD tool were then plotted at three conditions with the ECS-OFF, ECS-MAX and at un-installed condition. Reasonable results were obtained as a result of using computational fluid dynamics that can hence be justified as an alternative tool for use in future flow analysis of engine and components.

  • PDF