• Title/Summary/Keyword: Smart-UAV

Search Result 221, Processing Time 0.023 seconds

Computational Vibration Analysis and Evaluation of a Tilt-Rotor Aircraft Considering Equipment Supporting Structures (틸트로터 항공기의 탑재장비 상세 지지구조 형상을 고려한 전산진동해석 및 평가)

  • Kim, Yu-Sung;Kim, Dong-Man;Yang, Jian-Ming;Lee, Jung-Jin;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.24-32
    • /
    • 2007
  • In this study, computational structural vibration analyses of a smart unmanned aerial vehicle (SUAV) with tilt-rotors due to dynamic hub loads have been conducted considering detailed supporting structures of installed equipments. Three-dimensional dynamic finite element model has been constructed for different fuel conditions and tilting angles corresponding to helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis is successfully established. Also, dynamic loads generated by rotating blades and wakes in the transient and forward flight conditions are calculated by unsteady computational fluid dynamics technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations of the vibration sensitive equipments are presented in detail. In addition, vibration characteristics of structures and installed equipments of which safe operation is normally limited by the vibration environment specifications are physically investigated for different flight conditions.

  • PDF

Design of Control Mixer for 40% Scaled Smart UAV (스마트무인기 축소모형의 조종면 혼합기 설계)

  • Gang, Yeong-Sin;Park, Beom-Jin;Yu, Chang-Seon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.240-247
    • /
    • 2006
  • Tilt rotor aircraft is a multi-configuration airplane which has three independent flight modes; helicopter, conversion, and aiplane. The control surface mixer resign is reqctired to generate and distribute efficient control forces and moments in each flight mode. In the conversion mode, the thrust vector is changed from helicopter mode to airplane, therefore the thrust vector makes undesired forces and moments which affect on pitch, roll and yaw dynamics. This paper describes the design results of control surface mixer design which minimize the undesired forces and moments due to nacelles tilting angle change for 4O% scaled model.

  • PDF

Smart tracking design for aerial system via fuzzy nonlinear criterion

  • Wang, Ruei-yuan;Hung, C.C.;Ling, Hsiao-Chi
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.

AR-based 3D Digital Map Visualization Support Technology for Field Application of Smart Construction Technology

  • Song, Jinwoo;Hong, Jungtaek;Kwon, Soonwook
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1255-1255
    • /
    • 2022
  • Recently, research on digital twins to generate digital information and manage construction in real-time using advanced technology is being conducted actively. However, in the construction industry, it is difficult to optimize and apply digital technology in real-time due to the nature of the construction industry in which information is constantly fluctuating. In addition, inaccurate information on the topography of construction projects is a major challenge for earthmoving processes. In order to ultimately improve the cost-effectiveness of construction projects, both construction quality and productivity should be addressed through efficient construction information management in large-scale earthworks projects. Therefore, in this study, a 3D digital map-based AR site management work support system for higher efficiency and accuracy of site management was proposed by using unmanned aerial vehicles (UAV) in wide earthworks construction sites to generate point cloud data, building a 3D digital map through acquisition and analysis of on-site sensor-based information, and performing the visualization with AR at the site By utilizing the 3D digital map-based AR site management work support system proposed in this study, information is able to be provided quickly to field managers to enable an intuitive understanding of field conditions and immediate work processing, thereby reducing field management sluggishness and limitations of traditional information exchange systems. It is expected to contribute to the improvement of productivity by overcoming factors that decrease productivity in the construction industry and the improvement of work efficiency at construction sites.

  • PDF

파워 효과를 고려한 스마트 무인기의 공력해석

  • Kim, Cheol-Wan;Chung, Jin-Deog
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • To validate the rotor performance analysis, 3D Computational Fluid Dynamics(CFD) analysis was performed for tilt rotor aeroacoustic model(TRAM). Also, 3D vehicle with rotating rotors was simulated for rotor power effect analysis. Multiple reference frame(MRF) and sliding mesh techniques were implemented to capture the effect of rotor revolution. CFD results were compared with the wind tunnel test results to validate their accuracy. At helicopter mode, CFD analysis predicted lower thrust than the wind tunnel test but CFD results showed good agreement with the test result at cruise mode. Rotor power effect decreased the lift but did not change drag and pitching moment.

  • PDF

A Design of Engine Exhaust Ejector for Smart UAV (스마트무인기의 엔진 배기이젝터 설계에 관한 연구)

  • Lee, Chang-Ho;Kim, Jai-Moo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.403-406
    • /
    • 2006
  • An ejector is designed for the purpose of engine bay cooling. The primary flow of the ejector is the exhaust gas of the PW206C turboshaft engine. The mass flow of secondary flow is calculated by using the approximate analytic equation. For the purpose of verification of approximate analytic method, comparison is made with the results of Navier-Stokes turbulent flow solution. According to the results of CFD, the mixing of two flows is incomplete due to the short length of mixing duct.

  • PDF

Aerodynamic Design of SUAV Flaperon (스마트무인기 플래퍼론 공력설계)

  • Choi Seong-Wook;Kim Jai-Moo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.165-171
    • /
    • 2004
  • Smart UAV, which adopting tiltrotor aircraft concept, requires long endurance and high speed capability simultaneously These two contradictable flight performances are hard to meet with single wing concept and inevitably require the operation of flap system which should reveal optimal performance for each flight mode. In order to design SUAV flaperon satisfying the performance requirement, various configurations are generated and their aerodynamic performances are analyzed using numerical flow computations around flaps. Considering aerodynamic performance and manufacturing simplicity, a final flap configuration is selected.

  • PDF

Numerical Study for the Effect of Engine Exhaust Gas on the Airframe of Smart UAV (스마트무인기 엔진 배기가스가 기체에 미치는 영향에 관한 수치적 연구)

  • Lee, Chang-Ho;Kim, Cheol-Wan;Kim, Jai-Moo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.464-467
    • /
    • 2008
  • An ejector is designed for the purpose of engine bay cooling. The primary flow of the ejector is the exhaust gas of the PW206C turboshaft engine. The mass flow of secondary flow is calculated by using the approximate analytic equation. And the effect of exhaust gas flow on the fuselage surface is investigated by using the Fluent Code. Three types of exhaust duct shape were compared in the viewpoint of surface temperature and aerodynamic drag. As a result, exhaust duct shape P3 shows minimum interference of exhaust gas and fuselage and minimum increment of drag among the three candidate shapes.

  • PDF

틸트로터 설계특성 및 주요 사이징 변수에 대한 요구

  • Ahn, Oh-Sung;Kim, Jai-Moo
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.277-286
    • /
    • 2004
  • In this study, summary of past tilt-rotor concept development presented, and based on that, major pros and cons of tilt-rotor technology compared to other air-vehicle concept was presented. Also presented were major design features, considerations and sizing constraints of tilt-rotor configuration implemented to the development of Smart UAV. It is hoped that this paper be served to understand the tilt-rotor air-vehicle design and development.

  • PDF

Opportunities for construction site monitoring by adopting first personal view (FPV) of a drone

  • Kim, Seungho;Kim, Sangyong
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.139-149
    • /
    • 2018
  • Understanding the current status of a construction project is necessary to achieve successful on-site management. Real-time information delivery is a major concern for construction industry practitioners in order to expedite decisions and discussions. We propose the use of a first personal view (FPV) system of a quadcopter drone as a tool for monitoring on-site status and communicating between construction participants. The most important function of the drone FPV system is its ability to visually monitor construction site situations in real time. An on-site management system process is developed, verified, and applied to several construction work tasks after determining factors that affect efficient construction management. The proposed system is expected to assist the construction manager in achieving high efficiency.