• Title/Summary/Keyword: Smart working

Search Result 397, Processing Time 0.033 seconds

A Study on Container Terminal Layout and the Productivity of Container Crane During Ship Turnaround Time (컨테이너 터미널 배치 형태와 본선작업 생산성에 대한 연구)

  • Shin, Sung-Ho;Kim, Yeonkook J.
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • In smart ports and port automation, the number of vertically deployed container terminals is growing. The purpose of this study is to analyze the productivity of horizontally arranged and vertically arranged container terminals by comparing the main ship operation time, and to recommend future strategies for increasing the operational efficiency of vertically configured container terminals. To achieve our goal, we chose two terminals representating each type, and collected berth allocation status data from 2018 to 2022. Then we analyzed the data using the Accelerated Failure Time (AFT) model, a parametric survival analysis technique. Under the assumption that the working circumstances of the C/C (Container Crane) are the same, we find that the productivity of on-board work of the vertically placed container terminal is higher than that of the horizontally placed container terminal. Our result also shows that the productivity is reduced during the COVID-19 period and the European ships show lower onboard work time. On the basis of these findings, we propose strategies to improve the productivity of vertical container terminals.

Smart Safety Management System based on ICT Sensor (ICT 센서를 기반한 스마트 안전관리 시스템)

  • Lee, Seung-Chul;Joung, Young-Su;Cho, Min-Jun;Jeon, Dong-Ju;Baek, Uk-Jin;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.542-545
    • /
    • 2022
  • Recently, the Act on the Punishment of Severe Disasters has drawn attention to the construction environment. A common way to check the safety management of the construction site is for workers to check the site with their own eyes. However, this method is inevitably affected by the limitations of workers' abilities, resulting in fatigue and reduced work efficiency. For this reason, it cannot be an efficient method. Thus, we intend to help the working environment and construction site safety through this study, by proposing an efficient ICT safety management system that can supplement the above methods. In this paper explain the design of the access management system using RFID and the field information monitoring method through noise sensors and fine dust sensors. In addition, we propose a system that can prevent accidents between heavy equipment and people with a PIR sensor, and prevent safety accidents by grasping the slope of the building being worked through a gyro sensor.

  • PDF

Analysis of Perceptions on ESG Management Evaluation Priorities based on Agricultural and Rural Public Value - Focusing on the Korea Rural Community Corporation - (농업·농촌 공익적 가치 기반 ESG 경영 평가지표 인식 분석 - 한국농어촌공사를 대상으로 -)

  • Kim, Ki-yoon;Kim, Mi-seok;Bum, Jin-woo;An, Dong-hwan;Yoo, Do-il
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.4
    • /
    • pp.41-53
    • /
    • 2022
  • This study aims to identify perceptions on ESG management evaluation priorities based on public value in the agricultural and rural sector with the focus on the Korea Rural Community Corporation. We conduct Analytic Hierarchy Process (AHP) to analyze how ESG management evaluation priorities are perceived by distinctive groups across industrial fields. To this end, experts working in the agricultural and rural sector and the general public in non-agricultural sector were questioned to derive and compare the weights for each class of ESG management. Results show the followings: First, the weight for the environment (E) was derived as 0.51774 in the first layer, which was found to be the most important evaluation item among the environment (E), society (S), and governance (G). Second, "ecosystem restoration," "urban-rural exchange expansion and regional development," and "increasing transparency" were the most important items in the second layer. Third, priorities between the agricultural and non-agricultural respondents groups were different in environmental (E) and social (S) categories, which explained that perceptions on ESG management by workers and policy makers in the agricultural and rural sector are different from those by general public in the non-agricultural sector.

Analysis of Engine Load Factor for Agricultural Cultivator during Plow and Rotary Tillage Operation (플라우 및 로터리 작업 시 농업용 관리기의 엔진 부하율 분석)

  • Si-Eon Lee;Taek-Jin Kim;Yong-Joo Kim;Ryu-Gap Lim;Wan-Soo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • The aim of this study was to measure and analyze engine load factor (LF) according to working conditions (operation type and gear stage) of small agricultural multi-purpose cultivator to estimate the emission of air pollutants. To calculate LF, a torque sensor capable of collecting torque and rotational speed was installed on the engine output shaft and DAQ was used to collect data. A field test was conducted with major operation of a cultivator and tillage operations (plow tillage and rotary tillage). Engine power was calculated using engine torque and rotational speed and LF was calculated using real-time power and rated power. In addition, unified LF was calculated using the weight for each operation and the average LF for each operation. As a result, average LF values at 1.87 and 3.10 km/h by plow tillage were 0.50 and 0.69, respectively. Average LF values at 1.87 and 3.10 km/h by rotary tillage were 0.70 and 0.78, respectively. Furthermore, unified LF calculated in consideration of the weight factor showed a value of 0.65, which was 135% higher than the conventional LF (0.48). Results of this study could be used as basic information for realizing LF values in the field of agricultural machinery.

Seismic control of high-speed railway bridge using S-shaped steel damping friction bearing

  • Guo, Wei;Wang, Yang;Zhai, Zhipeng;Du, Qiaodan
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.479-500
    • /
    • 2022
  • In this study, a new type of isolation bearing is proposed by combining S-shaped steel plate dampers (SSDs) with a spherical steel bearing, and the seismic control effect of a five-span standard high-speed railway bridge is investigated. The advantages of the proposed S-shaped steel damping friction bearing (SSDFB) are that it cannot only lengthen the structural periods, dissipate the seismic energy, but also prevent bridge unseating due to the restraint effectiveness of SSDs in the large relative displacements between the girders and piers. This study first presents a detailed description and working principle of the SSDFB. Then, mechanical modeling of the SSDFB was derived to fundamentally define its cyclic behavior and obtain key mechanical parameters. The numerical model of the SSDFB's critical component SSD was verified by comparing it with the experimental results. After that, parameter studies of the dimensions and number of SSDs, the friction coefficient, and the gap length of the SSDFBs were conducted. Finally, the longitudinal seismic responses of the bridge with SSDFBs were compared with the bridge with spherical bearing and spherical bearing with strengthened shear keys. The results showed that the SSDFB can not only significantly mitigate the shear force responses and residual displacement in bridge substructures but also can effectively reduce girder displacement and prevent bridge unseating, at a cost of inelastic deformation of the SSDs, which is easy to replace. In conclusion, the SSDFB is expected to be a cost-effective option with both multi-stage energy dissipation and restraint capacity, making it particularly suitable for seismic isolation application to high-speed railway bridges.

A deep and multiscale network for pavement crack detection based on function-specific modules

  • Guolong Wang;Kelvin C.P. Wang;Allen A. Zhang;Guangwei Yang
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.135-151
    • /
    • 2023
  • Using 3D asphalt pavement surface data, a deep and multiscale network named CrackNet-M is proposed in this paper for pixel-level crack detection for improvements in both accuracy and robustness. The CrackNet-M consists of four function-specific architectural modules: a central branch net (CBN), a crack map enhancement (CME) module, three pooling feature pyramids (PFP), and an output layer. The CBN maintains crack boundaries using no pooling reductions throughout all convolutional layers. The CME applies a pooling layer to enhance potential thin cracks for better continuity, consuming no data loss and attenuation when working jointly with CBN. The PFP modules implement direct down-sampling and pyramidal up-sampling with multiscale contexts specifically for the detection of thick cracks and exclusion of non-crack patterns. Finally, the output layer is optimized with a skip layer supervision technique proposed to further improve the network performance. Compared with traditional supervisions, the skip layer supervision brings about not only significant performance gains with respect to both accuracy and robustness but a faster convergence rate. CrackNet-M was trained on a total of 2,500 pixel-wise annotated 3D pavement images and finely scaled with another 200 images with full considerations on accuracy and efficiency. CrackNet-M can potentially achieve crack detection in real-time with a processing speed of 40 ms/image. The experimental results on 500 testing images demonstrate that CrackNet-M can effectively detect both thick and thin cracks from various pavement surfaces with a high level of Precision (94.28%), Recall (93.89%), and F-measure (94.04%). In addition, the proposed CrackNet-M compares favorably to other well-developed networks with respect to the detection of thin cracks as well as the removal of shoulder drop-offs.

Prediction of Draft Force of Moldboard Plow according to Travel Speed in Cohesive Soil using Discrete Element Method (이산요소법을 활용한 점성토 환경에서의 작업 속도에 따른 몰드보드 플라우 견인력 예측)

  • Bo Min Bae;Dae Wi Jung;Dong Hyung Ryu;Jang Hyeon An;Se O Choi;Yeon Soo Kim;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.71-79
    • /
    • 2023
  • In the field of agricultural machinery, various on-field tests are conducted to measure design load for optimal design of agricultural equipment. However, field test procedures are costly and time-consuming, and there are many constraints on field soil conditions due to weather, so research on utilizing simulation to overcome these shortcomings is needed. Therefore, this study aimed to model agricultural soils using discrete element method (DEM) software. To simulate draft force, predictions are made according to travel speed and compared to field test results to validate the prediction accuracy. The measured soil properties are used for DEM modeling. In this study, the soil property measurement procedure was designed to measure the physical and mechanical properties. DEM soil model calibration was performed using a virtual vane shear test instead of the repose angle test. The DEM simulation results showed that the prediction accuracy of the draft force was within 4.8% (2.16~6.71%) when compared to the draft force measured by the field test. In addition, it was confirmed that the result was up to 72.51% more accurate than those obtained through theoretical methods for predicting draft force. This study provides useful information for the DEM soil modeling process that considers the working speed from the perspective of agricultural machinery research and it is expected to be utilized in agricultural machinery design research.

A real-time hybrid testing method for vehicle-bridge coupling systems

  • Guoshan Xu;Yutong Jiang;Xizhan Ning;Zhipeng Liu
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • The investigation on vehicle-bridge coupling system (VBCS) is crucial in bridge design, bridge condition evaluation, and vehicle overload control. A real-time hybrid testing (RTHT) method for VBCS (RTHT-VBCS) is proposed in this paper for accurately and economically disclosing the dynamic performance of VBCSs. In the proposed method, one of the carriages is chosen as the experimental substructure loaded by servo-hydraulic actuator loading system in the laboratory, and the remaining carriages as well as the bridge structure are chosen as the numerical substructure numerically simulated in one computer. The numerical substructure and the experimental substructure are synchronized at their coupling points in terms of force equilibrium and deformation compatibility. Compared to the traditional iteration experimental method and the numerical simulation method, the proposed RTHT-VBCS method could not only obtain the dynamic response of VBCS, but also economically analyze various working conditions. Firstly, the theory of RTHT-VBCS is proposed. Secondly, numerical models of VBCS for RTHT method are presented. Finally, the feasibility and accuracy of the RTHT-VBCS are preliminarily validated by real-time hybrid simulations (RTHSs). It is shown that, the proposed RTHT-VBCS is feasible and shows great advantages over the traditional methods, and the proposed models can effectively represent the VBCS for RTHT method in terms of the force equilibrium and deformation compatibility at the coupling point. It is shown that the results of the single-degree-of-freedom model and the train vehicle model are match well with the referenced results. The RTHS results preliminarily prove the effectiveness and accuracy of the proposed RTHT-VBCS.

The Effect of Managerial Information Security Intelligence on the Employee's Information Security Countermeasure Awareness (경영진의 정보보안 지능이 조직원의 보안대책 인식에 미치는 영향)

  • Jin Young Han;Hyun-Sun Ryu
    • Information Systems Review
    • /
    • v.18 no.3
    • /
    • pp.137-153
    • /
    • 2016
  • Organizations depend on smart working environments, such as mobile networks. This development motivates companies to focus on information security. Information leakage negatively affects companies. To address this issue, management and information security researchers focus on compliance of employees with information security policies. Countermeasures in information security are known antecedents of intention to comply information security policies. Despite the importance of this topic, research on the antecedents of information security countermeasures is scarce. The present study proposes information security intelligence as an antecedent of information security countermeasures. Information security intelligence adapted the concept of safety intelligence provided by Kirwan (2008). Information security intelligence consists of problem solving skills, social skills, and information security knowledge related to information security. Results show that problem solving skills and information security knowledge have positive effects on the awareness of employees of information security countermeasures.

Implementation of a Crowding Measurement System Based on High Frequency Signal

  • Myoungbeom Chung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.67-74
    • /
    • 2024
  • As the number of coffee shops increases, many people are studying or working at coffee shops. Coffee shop operators have been required to analyze customer visits due to customer turnover and profit problems. Methods such as image analysis, QR code authentication, and Bluetooth beacon have been proposed for these statistics and analysis. However, it is difficult to use due to problems such as invasion of privacy and low accuracy. Therefore, in this study, to solve these problem and provide more accurate in-store congestion information, we propose a crowding measurement method of coffee shop using high frequency signal. There is an advantage in that a high frequency signal replaces the Bluetooth signal, and the transmission range of the signal is limited to the store, thereby increasing the accuracy of the method. To verify the performance of the proposed system, we conducted a comparative experiment with a Bluetooth based system, and as a result, the proposed method showed lower misrecognition rate. Thus, the proposed method will be an effective useful service for providing information on crowding at coffee shops and processing statistics.