• Title/Summary/Keyword: Smart soft composite actuator

Search Result 5, Processing Time 0.019 seconds

Fabrication of Shell Actuator using Woven Type Smart Soft Composite (직조 형태의 지능형 연성 복합재료를 이용한 쉘 구동기의 제작)

  • Han, Min-Woo;Song, Sung-Hyuk;Chu, Won-Shik;Lee, Kyung-Tae;Lee, Daniel;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.39-46
    • /
    • 2013
  • Smart material such as SMA (Shape Memory Alloy) has been studied in various ways because it can perform continuous, flexible, and complex actuation in simple structure. Smart soft composite (SSC) was developed to achieve large deformation of smart material. In this paper, a shell actuator using woven type SSC was developed to enhance stiffness of the structure while keeping its deformation capacity. The fabricated actuator consisted of a flexible polymer and woven structure which contains SMA wires and glass fibers. The actuator showed various actuation motions by controlling a pattern of applied electricity because the SMA wires are embedded in the structure as fibers. To verify the actuation ability, we measured its maximum end-edge bending angle, twisting angle, and actuating force, which were $103^{\circ}$, $10^{\circ}$, and 0.15 N, respectively.

Smart Phone Robot Made of Smart Soft Composite (SSC)

  • Wang, Wei;Rodrigue, Hugo;Lee, Jang-Yeob;Han, Min-Woo;Ahn, Sung-Hoon
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Soft morphing robotics making use of smart material and based on biomimetic principles are capable of continuous locomotion in harmony with its environment. Since these robots do not use traditional mechanical components, they can be built to be light weight and capable of a diverse range of locomotion. This paper illustrates a flexible smart phone robot made of smart soft composite (SSC) with inchworm-like locomotion capable of two-way linear motion. Since rigid components are embedded within the robot, bending actuators with embedded rigid segments were investigated in order to obtain the maximum bending curvature. To verify the results, a simple mechanical model of this actuator was built and compared with experimental data. After that, the flexible robot was implemented as part of a smart phone robot where the rigid components of the phone were embedded within the matrix. Then, experiments were conducted to test the smart phone robot actuation force under different deflections to verify its load carrying capability. After that, the communication between the smart phone and robot controller was implemented and a corresponding phone application was developed. The locomotion of the smart phone robot actuated through an independent controller was also tested.

Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition (섬유 강화 지능형 연성 복합재 구동기의 재료구성에 따른 거동특성 평가)

  • Han, Min-Woo;Kim, Hyung-Il;Song, Sung-Hyuk;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.81-85
    • /
    • 2017
  • Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

Hybrid 3D Printing and Casting Manufacturing Process for Fabrication of Smart Soft Composite Actuators (지능형 연성 복합재 구동기 제작을 위한 3D 프린팅-캐스팅 복합 공정)

  • Kim, Min-Soo;Song, Sung-Hyuk;Kim, Hyung-Il;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • Intricate deflection requires many conventional actuators (motors, pistons etc.), which can be financially and spatially wasteful. Novel smart soft composite (SSC) actuators have been suggested, but fabrication complexity restricts their widespread use as general-purpose actuators. In this study, a hybrid manufacturing process comprising 3-D printing and casting was developed for automated fabrication of SSC actuators with $200{\mu}m$ precision, using a 3-D printer (3DISON, ROKIT), a simple polymer mixer, and a compressor controller. A method to improve precision is suggested, and the design compensates for deposition and backlash errors (maximum, $170{\mu}m$). A suitable flow rate and tool path are suggested for the polymer casting process. The equipment and process costs proposed here are lower than those of existing 3D printers for a multi-material deposition system and the technique has $200{\mu}m$ precision, which is suitable for fabrication of SSC actuators.

Recent Advances in Electric Stimulus-Responsive Soft Actuators (전기자극 감응형 소프트 액추에이터의 최신 동향)

  • Seong-Jun Jo;Gwon Min Kim;Jaehwan Kim
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.247-264
    • /
    • 2024
  • Recent advances in electro-active polymer (EAP) actuators, owing to their flexibility, lightweight, and simple fabrication process, have showcased their high utility across various fields such as soft robotics, biomimetics, wearable devices, and haptic technologies. Moreover, EAP actuators are evolving into smart devices with new functions and characteristics through the integration of functional materials and innovative technologies. This paper categorizes EAPs into ionic EAPs and electronic EAPs. Ionic EAPs include, most notably, ionic polymer-metal composites (IPMCs) and conducting polymers (CPs), while electronic EAPs encompass dielectric elastomer actuators (DEAs), ferroelectric polymer actuators, and the recently introduced hydraulically amplified self-healing electrostatic (HASEL) actuators. Detailed explanations based on the latest research are provided concerning the mechanism, structure, performance improvement strategies, methods for adding functionality, and application areas for each type of actuator.