• Title/Summary/Keyword: Smart monitoring

Search Result 1,900, Processing Time 0.023 seconds

Real-time structural damage detection using wireless sensing and monitoring system

  • Lu, Kung-Chun;Loh, Chin-Hsiung;Yang, Yuan-Sen;Lynch, Jerome P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.759-777
    • /
    • 2008
  • A wireless sensing system is designed for application to structural monitoring and damage detection applications. Embedded in the wireless monitoring module is a two-tier prediction model, the auto-regressive (AR) and the autoregressive model with exogenous inputs (ARX), used to obtain damage sensitive features of a structure. To validate the performance of the proposed wireless monitoring and damage detection system, two near full scale single-story RC-frames, with and without brick wall system, are instrumented with the wireless monitoring system for real time damage detection during shaking table tests. White noise and seismic ground motion records are applied to the base of the structure using a shaking table. Pattern classification methods are then adopted to classify the structure as damaged or undamaged using time series coefficients as entities of a damage-sensitive feature vector. The demonstration of the damage detection methodology is shown to be capable of identifying damage using a wireless structural monitoring system. The accuracy and sensitivity of the MEMS-based wireless sensors employed are also verified through comparison to data recorded using a traditional wired monitoring system.

Security Issues on Smart Grid (스마트 그리드 보안 이슈)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.279-284
    • /
    • 2013
  • Improve the global environment for low carbon emissions and green energy, and the growing interest in IT technology, combined with the existing power grid to achieve this, to achieve more efficient and environment-friendly smart grid smart grid projects around the world actively being deployed. A smart grid is expected to be a modernization of the legacy electricity network. Therefore, this research provides a secure smart grid model so that it provides better monitoring, protecting and optimizing automatically to operation of the interconnected elements.

Analysis of Field Conditions and Requirements for Deploying Smart Factory (스마트공장 구축을 위한 현장실태 및 요구사항 분석)

  • Lee, Hyunjeong;Kim, Yong Jin;Yim, Jeongil;Kim, Yong-Woon;Lee, Soo-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • The operating environments of factories and manufacturing units have changed dramatically due to globalization, population, and customization. The existing factories are converted into smart units using information and communications technology (ICT). These smart factories can produce, control, repair, and manage themselves. The manufacturing processes are efficiently optimized using the monitoring and analysis methods of ICT. In this experimental study, we carried out a survey on the system solution providers and consumer companies to determine the field conditions and requirements necessary for assembling a smart factory. Using the results of this survey, we effectively devised smart factory solutions and implemented them on the existing conditions in various factories.

Cognitive Beamforming Based Smart Metering for Coexistence with Wireless Local Area Networks

  • Lee, Keonkook;Chae, Chan-Byoung;Sung, Tae-Kyung;Kang, Joonhyuk
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.619-628
    • /
    • 2012
  • The ZigBee network has been considered to monitor electricity usage of home appliances in the smart grid network. ZigBee, however, may suffer from a coexistence problem with wireless local area network (WLAN). In this paper, to resolve the coexistence problem between ZigBee network and WLAN, we propose a new protocol constructing a cognitive smart grid network for supporting monitoring of home appliances. In the proposed protocol, home appliances first estimates the transmission timing and channel information of WLAN by reading request to send/clear to send (RTS/CTS) frames of WLAN. Next, based on the estimated information, home appliances transmit a data at the same time as WLAN transmission. To manage the interference between WLAN and smart grid network, we propose a cognitive beamforming algorithm. The beamforming algorithm is designed to guaranteeing zero interference to WLAN while satisfying a required rate for smart metering. We also propose an energy efficient rate adaptation algorithm. By slowing down the transmission rate while satisfying an imperceptible impact of quality of service (QoS) of the receiver, the home appliance can significantly save transmit power. Numerical results show that the proposed multiple antenna technique provides reliable communications for smart metering with reduced power comparing to the simple transmission technique.

Development of the Compact Smart Device for Industrial IoT (산업용 IoT를 위한 초소형 스마트 디바이스의 개발)

  • Ryu, Dae-Hyun;Choi, Tae-Wan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.751-756
    • /
    • 2018
  • In smart factories and industrial IoT, all facilities in a factory are monitored over the Internet, thereby facility can reduce the downtime and increase the availiability by preventive maintenance before it breaks down. The abnormal conditions of the major facilities in the plant are caused by abnormal temperature rise, vibration, and variations in noise. Consequently, it is critical to develop a very small smart device that is easily installed in a small space to enable real-time monitoring of the vibration status of the facility. In this study, smart devices were developed for smart factory fault prediction and robustness management using ultra small micro-controllers with WiFi capabilities and MEMS acceleration sensors.

A Study on Building a Test Bed for Smart Manufacturing Technology (스마트 제조기술을 위한 테스트베드 구축에 관한 연구)

  • Cho, Choon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.475-479
    • /
    • 2021
  • There are many difficulties in the applications of smart manufacturing technology in the era of the 4th industrial revolution. In this paper, a test bed was built to aim for acquiring smart manufacturing technology, and the test bed was designed to acquire basic technologies necessary for PLC (Programmable Logic Controller), HMI, Internet of Things (IoT), artificial intelligence (AI) and big data. By building a vehicle maintenance lift that can be easily accessed by the general public, PLC control technology and HMI drawing technology can be acquired, and by using cloud services, workers can respond to emergencies and alarms regardless of time and space. In addition, by managing and monitoring data for smart manufacturing, it is possible to acquire basic technologies necessary for embedded systems, the Internet of Things, artificial intelligence, and big data. It is expected that the improvement of smart manufacturing technology capability according to the results of this study will contribute to the effect of creating added value according to the applications of smart manufacturing technology in the future.

A Case Study of Measuring and Analyzing Electric Energy Usage in University Facilities Using Smart Plug (스마트플러그(IOT)를 이용한 대학시설의 전기에너지 사용량 계측 및 분석 사례 연구)

  • Park, Jun-Young;Lee, Chun-Kyong;Park, Tae-Keun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.27-34
    • /
    • 2018
  • The purpose of this study is to demonstrate and analyze the function of a Smart Plug before and after it is applied on the electrical appliances by controlling standby power usage. The research measures and analyzes the amount of electrical energy used while activating the Smart Plug with two types of appliances in a university facilities. The smart plugs were applied into a Group 1 appliances (Multi-function device, computer, laptop, Air con) which completely hinder the standby power, and a Group 2 appliances (Refrigerator, cold and hot water dispenser) which does not completely hinder the standby powers due to the characteristics of the function. First, the total standby power saving of all electrical appliances (Group 1 and Group 2) using the Smart plug was measured as 4.59%. Second, the energy saving of the Group 1 products was analyzed as 26.43%. Third, the standby power saving of the air conditioners from mid October to early December was measured as 31.06%, during the seasons when air conditioning was not actively in use. The research indicates that all specified appliances did have better energy efficiency with the Smart plug regardless of the amount of energy usage.