• Title/Summary/Keyword: Smart meters

Search Result 78, Processing Time 0.031 seconds

A novel approach to damage localisation based on bispectral analysis and neural network

  • Civera, M.;Fragonara, L. Zanotti;Surace, C.
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.669-682
    • /
    • 2017
  • The normalised version of bispectrum, the so-called bicoherence, has often proved a reliable method of damage detection on engineering applications. Indeed, higher-order spectral analysis (HOSA) has the advantage of being able to detect non-linearity in the structural dynamic response while being insensitive to ambient vibrations. Skewness in the response may be easily spotted and related to damage conditions, as the majority of common faults and cracks shows bilinear effects. The present study tries to extend the application of HOSA to damage localisation, resorting to a neural network based classification algorithm. In order to validate the approach, a non-linear finite element model of a 4-meters-long cantilever beam has been built. This model could be seen as a first generic concept of more complex structural systems, such as aircraft wings, wind turbine blades, etc. The main aim of the study is to train a Neural Network (NN) able to classify different damage locations, when fed with bispectra. These are computed using the dynamic response of the FE nonlinear model to random noise excitation.

Development of monocular video deflectometer based on inclination sensors

  • Wang, Shuo;Zhang, Shuiqiang;Li, Xiaodong;Zou, Yu;Zhang, Dongsheng
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.607-616
    • /
    • 2019
  • The video deflectometer based on digital image correlation is a non-contacting optical measurement method which has become a useful tool for characterization of the vertical deflections of large structures. In this study, a novel imaging model has been established which considers the variations of pitch angles in the full image. The new model allows deflection measurement at a wide working distance with high accuracy. A monocular video deflectometer has been accordingly developed with an inclination sensor, which facilitates dynamic determination of the orientations and rotation of the optical axis of the camera. This layout has advantages over the video deflectometers based on theodolites with respect to convenience. Experiments have been presented to show the accuracy of the new imaging model and the performance of the monocular video deflectometer in outdoor applications. Finally, this equipment has been applied to the measurement of the vertical deflection of Yingwuzhou Yangtze River Bridge in real time at a distance of hundreds of meters. The results show good agreement with the embedded GPS outputs.

Design and characterization of a compact array of MEMS accelerometers for geotechnical instrumentation

  • Bennett, V.;Abdoun, T.;Shantz, T.;Jang, D.;Thevanayagam, S.
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.663-679
    • /
    • 2009
  • The use of Micro-Electro-Mechanical Systems (MEMS) accelerometers in geotechnical instrumentation is relatively new but on the rise. This paper describes a new MEMS-based system for in situ deformation and vibration monitoring. The system has been developed in an effort to combine recent advances in the miniaturization of sensors and electronics with an established wireless infrastructure for on-line geotechnical monitoring. The concept is based on triaxial MEMS accelerometer measurements of static acceleration (angles relative to gravity) and dynamic accelerations. The dynamic acceleration sensitivity range provides signals proportional to vibration during earthquakes or construction activities. This MEMS-based in-place inclinometer system utilizes the measurements to obtain three-dimensional (3D) ground acceleration and permanent deformation profiles up to a depth of one hundred meters. Each sensor array or group of arrays can be connected to a wireless earth station to enable real-time monitoring as well as remote sensor configuration. This paper provides a technical assessment of MEMS-based in-place inclinometer systems for geotechnical instrumentation applications by reviewing the sensor characteristics and providing small- and full-scale laboratory calibration tests. A description and validation of recorded field data from an instrumented unstable slope in California is also presented.

Extended artificial neural network for estimating the global response of a cable-stayed bridge based on limited multi-response data

  • Namju Byun;Jeonghwa Lee;Keesei Lee;Young-Jong Kang
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.235-251
    • /
    • 2023
  • A method that can estimate global deformation and internal forces using a limited amount of displacement data and based on the shape superposition technique and a neural network has been recently developed. However, it is difficult to directly measure sufficient displacement data owing to the limitations of conventional displacement meters and the high cost of global navigation satellite systems (GNSS). Therefore, in this study, the previously developed estimation method was extended by combining displacement, slope, and strain to improve the estimation accuracy while reducing the need for high-cost GNSS. To validate the proposed model, the global deformation and internal forces of a cable-stayed bridge were estimated using limited multi-response data. The effect of multi-response data was analyzed, and the estimation performance of the extended method was verified by comparing its results with those of previous methods using a numerical model. The comparison results reveal that the extended method has better performance when estimating global responses than previous methods.

A Comparative Study on the Travel Behavior of Residents by Housing Types and Implication Deduction for TOD Implementation (TOD구현을 위한 주택유형별 거주자의 통행행태 비교 분석 및 시사점도출)

  • Lee, Kyu Jin;Park, Kwan Hwee;Choi, Keechoo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.1
    • /
    • pp.27-38
    • /
    • 2014
  • Recently, urban and transportation planning for Transit Oriented Development(TOD) has become a major issue. For the effective policy implementation of TOD, it is important to understand the travel behavior of residents in housing areas. In this study, we compared the travel behaviors of residents by housing types based on 'the 2010 Household Travel Survey Data' focusing on metropolitan areas. By building an estimation model for subway trip frequency by housing types, it was identified that the factors influencing subway trips and ultimately suggested implications to increase the use of the subway. The highest share of bus mode was for detached house residents with 22.8%, whereas the share of subway mode was highest by efficiency apartment residents with 17.5%. Walking distance to the subway from efficiency apartment and row house were verified as 661meters and 749meters. As the residents of each housing type have more cars and bicycles, their subway trips were decreased. It was also found that subway trips were increased when the population density of residence was high with good accessibility to subway stations and poor accessibility to bus service. In this study, the statistical findings to differentiate the planning factors of public transportation by housing types were also provided. The results of this study would be used for urban design considering the travel behaviors of residents by housing types and can also be utilized for promoting the patronage of public transportation. Some limitations and a future research agenda have also been discussed.

Analysis of Public Transport Travel Behavior by using Transport Card Data (대중교통 card data를 이용한 통행행태 분석(지하철역 하차후 환승 버스 이용자 중심으로))

  • Kim, Dae-Seong;Eom, Jin-Ki;Moon, Dae-Seop;Choi, Myoung-Hun;Song, Ji-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.443-452
    • /
    • 2011
  • This study analyzed passenger travel patterns especially for the transfer from metro to bus by using transit smart card data. We classified three types of land use such as residential, business, and shopping area where metro stations are located. The results show that more number of transfers was observed at residential area compared to that of shopping and business area. Also, more number of transfers from metro to arterial bus was observed than that of transfers to local bus. Further, the high number of transfers to arterial bus was observed at business and shopping area. This means that the transfer to bus at metro stations varies by land use. The egress walk distance from metro station was found to be approximately 400 meters and the average walk distance of young people was found to be shorter than that of the old.

  • PDF

Damage detection in plate structures using frequency response function and 2D-PCA

  • Khoshnoudian, Faramarz;Bokaeian, Vahid
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.427-440
    • /
    • 2017
  • One of the suitable structural damage detection methods using vibrational characteristics are damage-index-based methods. In this study, a damage index for identifying damages in plate structures using frequency response function (FRF) data has been provided. One of the significant challenges of identifying the damages in plate structures is high number of degrees of freedom resulting in decreased damage identifying accuracy. On the other hand, FRF data are of high volume and this dramatically decreases the computing speed and increases the memory necessary to store the data, which makes the use of this method difficult. In this study, FRF data are compressed using two-dimensional principal component analysis (2D-PCA), and then converted into damage index vectors. The damage indices, each of which represents a specific condition of intact or damaged structures are stored in a database. After computing damage index of structure with unknown damage and using algorithm of lookup tables, the structural damage including the severity and location of the damage will be identified. In this study, damage detection accuracy using the proposed damage index in square-shaped structural plates with dimensions of 3, 7 and 10 meters and with boundary conditions of four simply supported edges (4S), three clamped edges (3C), and four clamped edges (4C) under various single and multiple-element damage scenarios have been studied. Furthermore, in order to model uncertainties of measurement, insensitivity of this method to noises in the data measured by applying values of 5, 10, 15 and 20 percent of normal Gaussian noise to FRF values is discussed.

Automatic NPK Calculation Based on Nutrients of Livestock Manure (ICT 기반 가축분뇨 중 함유 NPK 양분의 정량적 관리기법 연구)

  • Lee, Myunggyu;Kim, Sooryang;Hong, Yousik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.173-179
    • /
    • 2017
  • Advanced countries, animal wastes are produced using bioenergy and methane gas technology. In Korea, many researches are being actively carried out to develop livestock manure as a resource technology rather than a animal waste. However, the production of bio-gas using livestock manure is still in the process of development of functional livestock and compost because of low economic efficiency with livestock manure recycling technology. In this paper, in order to accurately estimate the manure output, It will calculate the manure excretion if you have finished input the number of pigs. In addition, we simulated the fertilization rate of three elements of NPK fertilizer per 100 square meters automatically.

Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines

  • Caterino, Nicola;Georgakis, Christos T.;Spizzuoco, Mariacristina;Occhiuzzi, Antonio
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.75-92
    • /
    • 2016
  • The design of a semi-active (SA) control system addressed to mitigate wind induced structural demand to high wind turbine towers is discussed herein. Actually, the remarkable growth in height of wind turbines in the last decades, for a higher production of electricity, makes this issue pressing than ever. The main objective is limiting bending moment demand by relaxing the base restraint, without increasing the top displacement, so reducing the incidence of harmful "p-delta" effects. A variable restraint at the base, able to modify in real time its mechanical properties according to the instantaneous response of the tower, is proposed. It is made of a smooth hinge with additional elastic stiffness and variable damping respectively given by springs and SA magnetorheological (MR) dampers installed in parallel. The idea has been physically realized at the Denmark Technical University where a 1/20 scale model of a real, one hundred meters tall wind turbine has been assumed as case study for shaking table tests. A special control algorithm has been purposely designed to drive MR dampers. Starting from the results of preliminary laboratory tests, a finite element model of such structure has been calibrated so as to develop several numerical simulations addressed to calibrate the controller, i.e., to achieve as much as possible different, even conflicting, structural goals. The results are definitely encouraging, since the best configuration of the controller leaded to about 80% of reduction of base stress, as well as to about 30% of reduction of top displacement in respect to the fixed base case.

Data Interworking Model Between DLMS and LwM2M Protocol (DLMS와 LwM2M 프로토콜 간 데이터 연동 모델 연구)

  • Myoung, Nogil;Park, Myunghye;Kim, Younghyun;Kang, Donghoon;Eun, Changsoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.1
    • /
    • pp.29-33
    • /
    • 2020
  • Despite the same system architecture and operation principle, Advanced Metering Infrastructure (AMI) and Internet of Things (IoT) are recognized as a heterogeneous system. This is due to the different object modeling and communication protocols used in smart meters and sensors. However, data interworking between AMI and IoT is expected to be inevitable in the future. In this paper, we propose Device Language Message Specification (DLMS) to Lightweight Machine to Machine (LwM2M) conversion model. The proposed interworking model can reduce the packet size by 46.5% compared to that of the encapsulation method.