• Title/Summary/Keyword: Smart magnetic materials

Search Result 51, Processing Time 0.022 seconds

Recent Advances in Soft Magnetic Actuators and Sensors using Magnetic Particles (자성 분말 기반 소프트 자성 액츄에이터 및 센서 연구 동향)

  • Song, Hyeonseo;Lee, Hajun;Kim, Junghyo;Kim, Jiyun
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.509-517
    • /
    • 2021
  • Smart materials capable of changing their characteristics in response to stimuli such as light, heat, pH, and electric and magnetic fields are promising for application to flexible electronics, soft robotics, and biomedicine. Compared with conventional rigid materials, these materials are typically composed of soft materials that improve the biocompatibility and allow for large and dynamic deformations in response to external environmental stimuli. Among them, smart magnetic materials are attracting immense attention owing to their fast response, remote actuation, and wide penetration range under various conditions. In this review, we report the material design and fabrication of smart magnetic materials. Furthermore, we focus on recent advances in their typical applications, namely, soft magnetic actuators, sensors for self-assembly, object manipulation, shape transformation, multimodal robot actuation, and tactile sensing.

Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment

  • Muhammad, Ahmed K.;Hamad, Luay Badr;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.237-257
    • /
    • 2019
  • The present article researches large-amplitude thermal free vibration characteristics of nonlocal two-phase piezo-magnetic nano-size beams having geometric imperfections by considering piezoelectric reinforcement scheme. The piezoelectric reinforcement can cause an enhanced vibration behavior of smart nanobeams under magnetic field. All previous studies on vibrations of piezoelectric-magnetic nano-size beams ignore the influences of geometric imperfections which are crucial since a nanobeam is not always ideal or perfect. Nonlinear governing equations of a smart nanobeam are derived based on classical beam theory and an analytical trend is provided to obtain nonlinear vibration frequency. This research shows that changing the volume fraction of piezoelectric phase in the material has a great influence on vibration behavior of smart nanobeam under electric and magnetic fields. Also, it can be seen that nonlinear vibration behaviors of smart nanobeam is dependent on the magnitude of exerted electric voltage, magnetic imperfection amplitude and substrate constants.

Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium

  • Amir, Saeed;Arshid, Ehsan;Maraghi, Zahra Khoddami
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.581-592
    • /
    • 2020
  • Magneto-rheological fluids and magneto-strictive materials are of the well-known smart materials which are used to control and reduce the vibrations of the structures. Vibration analysis of a smart annular three-layered plate is provided in this work. MR fluids are used as the core's material type and the face sheets are made from MS materials and is assumed they are fully bonded to each other. The structure is rested on visco-Pasternak foundation and also is subjected to a transverse magnetic field. The governing motion equations are derived based on CPT and employing Hamilton's principle and are solved via GDQ as a numerical method for various boundary conditions. Effect of different parameters on the results are considered and discussed in detail. One of the salient features of this work is the consideration of MR fluids as the core, MS materials as the faces, and all of them under magnetic field. The outcomes of this study may be led to design and create smart structures such as sensors, actuators and also dampers.

Optimization of VIGA Process Parameters for Power Characteristics of Fe-Si-Al-P Soft Magnetic Alloy using Machine Learning

  • Sung-Min, Kim;Eun-Ji, Cha;Do-Hun, Kwon;Sung-Uk, Hong;Yeon-Joo, Lee;Seok-Jae, Lee;Kee-Ahn, Lee;Hwi-Jun, Kim
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.459-467
    • /
    • 2022
  • Soft magnetic powder materials are used throughout industries such as motors and power converters. When manufacturing Fe-based soft magnetic composites, the size and shape of the soft magnetic powder and the microstructure in the powder are closely related to the magnetic properties. In this study, Fe-Si-Al-P alloy powders were manufactured using various manufacturing process parameter sets, and the process parameters of the vacuum induction melt gas atomization process were set as melt temperature, atomization gas pressure, and gas flow rate. Process variable data that records are converted into 6 types of data for each powder recovery section. Process variable data that recorded minute changes were converted into 6 types of data and used as input variables. As output variables, a total of 6 types were designated by measuring the particle size, flowability, apparent density, and sphericity of the manufactured powders according to the process variable conditions. The sensitivity of the input and output variables was analyzed through the Pearson correlation coefficient, and a total of 6 powder characteristics were analyzed by artificial neural network model. The prediction results were compared with the results through linear regression analysis and response surface methodology, respectively.

A Study on the Fundamental Characteristics Analysis of Giant Magnetostrictive Materials (초자기변형소자(Terfenol-D)의 기초특성해석에 관한 연구)

  • Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.398-403
    • /
    • 2011
  • Terfenol-D is one of several magnetostrictive materials with property of converting energy into mechanical motion, and vice versa. Magnetostriction is the property that causes certain ferromagnetic materials to change shape in a magnetic field. Terfenol-D is said to produce giant magnetostriction, strain greater than any other commercially available smart material. In this paper, fundamental characteristics analysis of giant magnetostrictive materials(Terfenol-D) has been investigated. The magnetic field analysis is carried out by using finite element method simulation ANSYS. The results show 223N in force and 9.5T in maximum magnetic flux density and 7.56 $10^6A/m$ in maximum magnetic field intensity 1A current. Through the analysis, basic data of Terfenol-D for the application of mechanical system are obtained.

A Study on the Effect of the Material and Applied Magnetic Field Strength on the Friction Characteristics of Magnetorheological Fluids (재질과 자기장 세기가 자기유변유체의 마찰 특성에 미치는 영향)

  • Zhang, Peng;Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • Magnetorheological (MR) fluid belongs to the group of smart materials. In MR fluid, iron particles in base oil form chains in the direction of the applied magnetic field, thus resulting in a variation in the stiffness and damping characteristics of the fluid. Research is being carried out on controlling the stiffness and damping characteristics as well as the tribological characteristics of the MR fluid. In this study, the friction characteristics of MR fluid have been evaluated using three types of materials and magnetic fields of different strengths. The coefficients of friction of the three types of MR fluid are measured, and the relationship between the coefficient of friction and the strength of the applied magnetic field is obtained.

The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories

  • Ellali, Mokhtar;Amara, Khaled;Bouazza, Mokhtar;Bourada, Fouad
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.113-122
    • /
    • 2018
  • In this article, an exact analytical solution for mechanical buckling analysis of magnetoelectroelastic plate resting on pasternak foundation is investigated based on the third-order shear deformation plate theory. The in-plane electric and magnetic fields can be ignored for plates. According to Maxwell equation and magnetoelectric boundary condition, the variation of electric and magnetic potentials along the thickness direction of the plate is determined. The von Karman model is exploited to capture the effect of nonlinearity. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical results reveal the effects of (i) lateral load, (ii) electric load, (iii) magnetic load and (iv) higher order shear deformation theory on the critical buckling load have been investigated. These results must be the analysis of intelligent structures constructed from magnetoelectroelastic materials.

Electromagnetic wave Shielding Materials for the Wireless Power Transfer Module in Mobile Handset (휴대단말기 무선전력 전송모듈용 전자기파 차폐소재)

  • Bae, Seok;Choi, Don-Chul;Hyun, Soon-Young;Lee, Sang Won
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.68-76
    • /
    • 2013
  • Currently, wireless power transmission technology based on magnetic induction was employed in battery charger for smart phone application. The system consists of wireless power transmitter in base station and receiver in smart phone. Size and thickness of receiver was strictly limited in the newest smart phone. In order to achieve high efficiency of a tiny small wireless power receiver module, sub-millimeter thick electromagnetic wave shielding sheet having high permeability and Q was essential component. It was found that magnetic field from transmitter to receiver can be intensified by sufficient shielding cause to minimize leakage magnetic flux by those magnetic properties. This leads to high efficiency of wireless power transmission and protects crucial integrated circuit of main board from electromagnetic noise. The important soft magnetic materials were introduced and summarized for the current small-power wireless power charger and NFC application and mid-power home appliance and high-power automotive application in the near future.

Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.77-87
    • /
    • 2020
  • By employing a quasi-3D plate formulation, the present research studies static stability of magneto-electro-thermo-elastic functional grading (METE-FG) nano-sized plates. Accordingly, influences of shear deformations as well as thickness stretching have been incorporated. The gradation of piezo-magnetic and elastic properties of the nano-sized plate have been described based on power-law functions. The size-dependent formulation for the nano-sized plate is provided in the context of nonlocal elasticity theory. The governing equations are established with the usage of Hamilton's rule and then analytically solved for diverse magnetic-electric intensities. Obtained findings demonstrate that buckling behavior of considered nanoplate relies on the variation of material exponent, electro-magnetic field, nonlocal coefficient and boundary conditions.

Adaptive tuned dynamic vibration absorbers working with MR elastomers

  • Zhang, X.Z.;Li, W.H.
    • Smart Structures and Systems
    • /
    • v.5 no.5
    • /
    • pp.517-529
    • /
    • 2009
  • This paper presents the development of a new Adaptive Tuned Dynamic Vibration Absorber (ATDVA) working with magnetorheological elastomers (MREs). The MRE materials were fabricated by mixing carbonyl iron particles with silicone rubber and cured under a strong magnetic field. An ATDVA prototype using MRE as an adaptable spring was designed and manufactured. The MRE ATDVA worked in a shear mode and the magnetic field was generated by a magnetic circuit and controlled through a DC power supply. The dynamic performances or the system transmissibility at various magnetic fields of the absorber were measured by using a vibration testing system. Experimental results indicated that this absorber can change its natural frequency from 35Hz to 90Hz, 150% of its basic natural frequency. A real time control logic is proposed to evaluate the control effect. The simulation results indicate that the control effect of MRE ATDVA can be improved significantly.