Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.5
/
pp.81-88
/
2021
Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.
In this paper, we analyses heart beat data to identify subjects stress state (binary) using heart rate variability (HRV) features extracted from heart beat data of the subjects and implement supervised machine learning techniques to create the mental stress classifier. There are four steps need to be done: data acquisition, data processing (HRV analysis), features selection, and machine learning, before doing performance measurement. There are 56 features generated from the HRV Analysis module with several of them are selected (using own algorithm) after computing the Pearson Correlation Matrix (p-values). The results of the list of selected features compared with all features data are compared by its model error after training using several machine learning techniques: support vector machine, decision tree, and discriminant analysis. SVM model and decision tree model with using selected features shows close results compared to using all recording by only 1% difference. Meanwhile, the discriminant analysis differs about 5%. All the machine learning method used in this works have 90% maximum average accuracy.
This study is a case study that applies plant classification learning using machine learning to fourth graders in elementary school in online learning situations. In this study, a plant classification learning education program associated with 2015 revision science curriculum was developed by applying the Artificial Intelligence biological classification teaching Learning model. The study participants were 31 fourth graders who agreed to participate voluntarily. Plant classification learning using machine learning was applied six hours for three weeks. The results of this study are as follows. First, as a result of image analysis on artificial intelligence, participants were mainly aware of artificial intelligence as mechanical (27%), human (23%) and household goods (23%). Second, an artificial intelligence recognition survey by semantic discrimination found that artificial intelligence was recognized as smart, good, accurate, new, interesting, necessary, and diverse. Third, there was a difference between men and women in perception and emotion of artificial intelligence, and there was no difference in perception of the ability of artificial intelligence. Fourth, plant classification learning using machine learning in this study influenced changes in artificial intelligence perception. Fifth, plant classification learning using machine learning in this study had a positive effect on reasoning ability.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.11
/
pp.2588-2594
/
2013
Damage is increasing by (Smishing) hacking attack Smishing you use a smart phone after entering 2013. Takeover of personal information and direct financial damage in collaboration with graphics sewing machine hacking attack has occurred. Monetary damage that leads to Internet payment service (ISP) and secure payment system in conjunction with graphics sewing machine hacking attack on a smartphone has occurred. In this paper, I will study analysis in the laboratory examples of actual infringement vinegar sewing machine hacking attack. It is a major power security measures to prevent damage to the secure payment system that a case analysis and practical principle technical nest sewing machine hacking attack, using Smishing. In this paper, I will be to research to be able to through a smart phone, to the online payment safer and more convenient.
Transactions of the Korean Society of Mechanical Engineers A
/
v.41
no.6
/
pp.517-524
/
2017
The objective of this research is to improve the efficiency of data collection from many machine components on smart factory floors using IoT(Internet of things) techniques and cloud platform, and to make it easy to update outdated diagnostic schemes through online deployment methods from cloud resources. The short-term analysis is implemented by a micro-controller, and it includes machine-learning algorithms for inferring snapshot information of the machine components. For long-term analysis, time-series and high-dimension data are used for root cause analysis by combining a cloud platform and multivariate analysis techniques. The diagnostic results are visualized in a web-based display dashboard for an unconstrained user access. The implementation is demonstrated to identify its performance in data acquisition and analysis for rotating machinery.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.10a
/
pp.141-145
/
2013
Damage is increasing by (Smishing) hacking attack Smishing you use a smart phone after entering 2013. Takeover of personal information and direct financial damage in collaboration with graphics sewing machine hacking attack has occurred. Monetary damage that leads to Internet payment service (ISP) and secure payment system in conjunction with graphics sewing machine hacking attack on a smartphone has occurred. In this paper, I will study analysis in the laboratory examples of actual infringement vinegar sewing machine hacking attack. It is a major power security measures to prevent damage to the secure payment system that a case analysis and practical principle technical nest sewing machine hacking attack, using Smishing. In this paper, I will be to research to be able to through a smart phone, to the online payment safer and more convenient.
Internet of Things (IoT) is producing various data as the smart environment comes. The IoT data collection is used as important data to judge systems's status. Therefore, it is important to monitor the anomaly state of the sensor in real-time and to detect anomaly data. However, it is necessary to convert the IoT data into a normalized data structure for anomaly detection because of the variety of data structures and protocols. Thus, we can expect a good quality effect such as accurate analysis data quality and service quality. In this paper, we propose an anomaly detection system based on big data from collected sensor data. The proposed system is applied to ensure anomaly detection and keep data quality. In addition, we applied the machine learning model of support vector machine using anomaly detection based on time-series data. As a result, machine learning using preprocessed data was able to accurately detect and predict anomaly.
Recently, with greatly improving the wireless communication technology, new services are created using smart sensors, i.e., machine-to-machine (M2M) and Internet of Things (IoT). In this paper, we propose a novel IoT device (IoTD) personalization method that adopt Small-cell Access Points (SAPs) to control IoTDs using user equipments (UEs), e.g., smart phones and tablet PC, from service users. First, we introduce a system architecture that consists of UE, IoTD, and SAP and propose the IoTD personalization method with two procedures, i.e., IoTD profile registration procedure and IoTD control procedure. Finally, through simulations, we evaluated the system performance of the proposed scheme and it is shown that the proposed scheme outperforms the conventional scheme in terms of the packet delay, packet loss probability, and normalized throughput.
In recent, there is research to maximize production by preventing failures/accidents in advance through fault diagnosis/prediction and factory automation in the industrial field. Cloud technology for accumulating a large amount of data, big data technology for data processing, and Artificial Intelligence(AI) technology for easy data analysis are promising candidate technologies for accomplishing this. Also, recently, due to the development of fault diagnosis/prediction, the equipment maintenance method is also developing from Time Based Maintenance(TBM), being a method of regularly maintaining equipment, to the TBM of combining Condition Based Maintenance(CBM), being a method of maintenance according to the condition of the equipment. For CBM-based maintenance, it is necessary to define and analyze the condition of the facility. Therefore, we propose a machine learning-based system and data model for diagnosing the fault in this paper. And based on this, we will present a case of predicting the fault occurrence in advance.
Md. Ashikuzzaman;Wasim Akram;Md. Mydul Islam Anik;Taskeed Jabid;Mahamudul Hasan;Md. Sawkat Ali
International Journal of Computer Science & Network Security
/
v.23
no.8
/
pp.95-100
/
2023
Due to Traffic accidents people faces health and economical casualties around the world. As the population increases vehicles on road increase which leads to congestion in cities. Congestion can lead to increasing accident risks due to the expansion in transportation systems. Modern cities are adopting various technologies to minimize traffic accidents by predicting mathematically. Traffic accidents cause economical casualties and potential death. Therefore, to ensure people's safety, the concept of the smart city makes sense. In a smart city, traffic accident factors like road condition, light condition, weather condition etcetera are important to consider to predict traffic accident severity. Several machine learning models can significantly be employed to determine and predict traffic accident severity. This research paper illustrated the performance of a hybridized neural network and compared it with other machine learning models in order to measure the accuracy of predicting traffic accident severity. Dataset of city Leeds, UK is being used to train and test the model. Then the results are being compared with each other. Particle Swarm optimization with artificial neural network (PSO-ANN) gave promising results compared to other machine learning models like Random Forest, Naïve Bayes, Nearest Centroid, K Nearest Neighbor Classification. PSO- ANN model can be adopted in the transportation system to counter traffic accident issues. The nearest centroid model gave the lowest accuracy score whereas PSO-ANN gave the highest accuracy score. All the test results and findings obtained in our study can provide valuable information on reducing traffic accidents.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.