The Cyber Physical System(CPS) is an important concept in achieving SMSs(Smart Manufacturing Systems). Generally, CPS consists of physical and virtual elements. The former involves manufacturing devices in the field space, whereas the latter includes the technologies such as network, data collection and analysis, security, and monitoring and control technologies in the cyber space. Currently, all these elements are being integrated for achieving SMSs in which we can control and analyze various kinds of producing and diagnostic issues in the cyber space without the need for human intervention. In this study, we focus on implementing a production equipment monitoring system related to building a SMS. First, we describe the development of a fog-based gateway system that links physical manufacturing devices with virtual elements. This system also interacts with the cloud server in a multimedia network environment. Second, we explain the proposed network infrastructure to implement a monitoring system operating on a cloud server. Then, we discuss our monitoring applications, and explain the experience of how to apply the ML(Machine Learning) method for predictive diagnostics.
본 연구는 소상공인에게 쉽고 간단한 사용자 인터페이스를 통한 효과적인 창고 운용 최적화 솔루션을 제시하며, 장기적으로 소상공인의 종합적인 온라인 판로 개척 체계 확립을 목표로 한다. 세부적으로 최신 물류 트렌드인 RFID 기술을 접목한 Smart 입출고 Machine 의 개발과 Machine Learning 기술을 이용한 창고 보안 Smart 개폐 장치, 안정적인 제품/주문 Data 관리를 위한 클라우드 서버(AWS) 서비스를 제공함과 더불어 Data 분석을 통한 트렌드 분석으로 소상공인이 온라인 생태계에 수익을 높이며 안정적으로 정착할 수 있는 방안을 제시한다.
Shabbir Ahmed Osmani;Roya Narimani;Hoyoung Cha;Changhyun Jun;Md Asaduzzaman Sayef
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.179-179
/
2023
This study suggests a new approach of water level forecasting for extended lead times using original data preprocessing with variational mode decomposition (VMD). Here, two machine learning algorithms including light gradient boosting machine (LGBM) and random forest (RF) were considered to incorporate extended lead times (i.e., 5, 10, 15, 20, 25, 30, 40, and 50 days) forecasting of water levels. At first, the original data at two water level stations (i.e., SW173 and SW269 in Bangladesh) and their decomposed data from VMD were prepared on antecedent lag times to analyze in the datasets of different lead times. Mean absolute error (MAE), root mean squared error (RMSE), and mean squared error (MSE) were used to evaluate the performance of the machine learning models in water level forecasting. As results, it represents that the errors were minimized when the decomposed datasets were considered to predict water levels, rather than the use of original data standalone. It was also noted that LGBM produced lower MAE, RMSE, and MSE values than RF, indicating better performance. For instance, at the SW173 station, LGBM outperformed RF in both decomposed and original data with MAE values of 0.511 and 1.566, compared to RF's MAE values of 0.719 and 1.644, respectively, in a 30-day lead time. The models' performance decreased with increasing lead time, as per the study findings. In summary, preprocessing original data and utilizing machine learning models with decomposed techniques have shown promising results for water level forecasting in higher lead times. It is expected that the approach of this study can assist water management authorities in taking precautionary measures based on forecasted water levels, which is crucial for sustainable water resource utilization.
Proceedings of the Korean Society of Computer Information Conference
/
2019.07a
/
pp.263-266
/
2019
In this paper, we suggest an activity and health monitoring system to observe the status of the dogs in real time. We also propose a k-days algorithm which helps monitoring pet health status using classified activity data from a machine learning approach. One of the best machine learning algorithm is used for the classification activity of dogs. Dog health status is acquired by comparing current activity calculation with passed k-days activities average. It is considered as a good, warning and bad health status for differences between current and k-days summarized moving average (SMA) > 30, SMA between 30 and 50, and SMA < 50, respectively.
Journal of information and communication convergence engineering
/
v.17
no.1
/
pp.8-13
/
2019
Smart Farming has been regarded as an important application in information and communications technology (ICT) fields. Selecting crops for cultivation at the pre-production stage is critical for agricultural producers' final profits because over-production and under-production may result in uncountable losses, and it is necessary to predict crop production to prevent these losses. The ITU-T Recommendation for Smart Farming (Y.4450/Y.2238) defines plan/production consultation service at the pre-production stage; this type of service must trace crop production in a predictive way. Several research papers present that machine learning technology can be applied to predict crop production after related data are learned, but these technologies have little to do with standardized ICT services. This paper clarifies the relationship between agricultural consultation services and predicting crop production. A prediction scheme is proposed, and the results confirm the usability and superiority of machine learning for predicting crop production.
Basically, machine learning models use input data to produce results. Sometimes, the input data is too complicated for the models to learn useful patterns. Therefore, feature engineering is a crucial data preprocessing step for constructing a proper feature set to improve the performance of such models. One of the most efficient methods for automating feature engineering is the autoencoder, which transforms the data from its original space into a latent space. However certain factors, including the datasets, the machine learning models, and the number of dimensions of the latent space (denoted by k), should be carefully considered when using the autoencoder. In this study, we design a framework to compare two data preprocessing approaches: with and without autoencoder and to observe the impact of these factors on autoencoder. We then conduct experiments using autoencoders with classifiers on popular datasets. The empirical results provide a perspective regarding the best suited autoencoder for these factors.
Journal of information and communication convergence engineering
/
v.20
no.4
/
pp.295-302
/
2022
This paper contains the development of a smart power device designed to collect load power data from industrial manufacturing machines, predict future variations in load power data, and detect abnormal data in advance by applying a machine learning-based prediction algorithm. The proposed load power data prediction model is implemented using a Long Short-Term Memory (LSTM) algorithm with high accuracy and relatively low complexity. The Flask and REST API are used to provide prediction results to users in a graphical interface. In addition, we present the results of experiments conducted to evaluate the performance of the proposed approach, which show that our model exhibited the highest accuracy compared with Multilayer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM) models. Moreover, we expect our method's accuracy could be improved by further optimizing the hyperparameter values and training the model for a longer period of time using a larger amount of data.
International Journal of Computer Science & Network Security
/
v.24
no.6
/
pp.77-82
/
2024
The Smart home energy consumption represents much of the total energy consumed in advanced countries. For this reason, the main objectif of this paper is to study the energy consumption profile by day for each home appliances: controllable appliances for example Washing machine, Tumble dryer and Air conditioning and uncontrollable appliances for example TV, PC, Lighting, Refrigerator and Electric heater. In this paper, we start with presentation of a smart home energy management systems. Next, we present the modeling and simulation of controllable appliances and uncontrollable appliances. Finally, concludes this paper with some prospects. The modeling and the simulation of a Smart home appliances is based on MATLAB/Simulink software.
As the machine learning becomes more common, development of application using machine learning is actively increasing. In addition, research on machine learning platform to support development of application is also increasing. However, despite the increasing of research on machine learning platform, research on suitable load balancing for machine learning platform is insufficient. Therefore, in this paper, we propose a load balancing scheme that can be applied to machine learning distributed environment. The proposed scheme composes distributed servers in a level hash table structure and assigns machine learning task to the server in consideration of the performance of each server. We implemented distributed servers and experimented, and compared the performance with the existing hashing scheme. Compared with the existing hashing scheme, the proposed scheme showed an average 26% speed improvement, and more than 38% reduced the number of waiting tasks to assign to the server.
The development of the technology of the 21st century, wireless Internet technology development in smart environments, was rapidly settled. In such an environment, the user is faced with many smart devices and smart content. This study is the analysis of the smart environment and smart devices, and user-to-user cognitive out about the effects reported. Cognitive effects observed behavior, technology, and user-centered system design, and plays a very important role to play in educating the users. And theoretical consideration about the UX (User eXperience) and UXD (User eXperience Design), by case analysis on the technical aspects of 'effective' visual aspect of interoperation aspects (interaction), and the cognitive effects of UXD (User eXperience Design) examined. As a result, on the visual aspects of the user experience based on the design that can be used to know, and be sound or through interaction with the user of the machine-to-machine interaction (and interaction) that must be provided, such as location-based or speech recognition technology will help you through the convenience of the user. Through this research, the smart environment and helping act of understanding, effective UXD (User eXperience Design) to take advantage of to help.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.