• Title/Summary/Keyword: Smart lighting process

Search Result 14, Processing Time 0.025 seconds

Elements and Structure of the Smart Lighting Design in the Office

  • Yang, Hyejin;Pan, Younghwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.29-38
    • /
    • 2016
  • Objective: The purpose of this research is to extract factors affecting office lighting and their relations, and then develop a framework that helps designers research and design smart lighting systems. Background: Due to the highly specialized usages of offices, the lighting system within offices also varies according to space, work, user, etc. A framework which considers these various factors and their relations is necessary for understanding and developing smart lighting systems. Method: First we extract factors affecting office lighting conditions, and select factors that can be controlled. We then analyze and develop a structure which reflects the relations among these factors from procedural perspective. Results: We divide factors affecting office lighting into physical and social factors, and then conceptualize their relations using a circular model. We then develop our framework from procedural perspective by dividing these factors into three levels, namely Subject, Action and Object. Conclusion: The developed framework organizes various factors affecting office lighting and their relations, and helps understand the procedural and structural aspects of lighting system. Application: Our framework helps designing and refining smart lighting system for complicated office spaces by helping people understanding the overall structure of office lighting.

Design of Path Prediction Smart Street Lighting System on the Internet of Things

  • Kim, Tae Yeun;Park, Nam Hong
    • Journal of Integrative Natural Science
    • /
    • v.12 no.1
    • /
    • pp.14-19
    • /
    • 2019
  • In this paper, we propose a system for controlling the brightness of street lights by predicting pedestrian paths, identifying the position of pedestrians with motion sensing sensors and obtaining motion vectors based on past walking directions, then predicting pedestrian paths through the route prediction smart street lighting system. In addition, by using motion vector data, the pre-treatment process using linear interpolation method and the fuzzy system and neural network system were designed in parallel structure to increase efficiency and the rough set was used to correct errors. It is expected that the system proposed in this paper will be effective in securing the safety of pedestrians and reducing light pollution and energy by predicting the path of pedestrians in the detection of movement of pedestrians and in conjunction with smart street lightings.

Data-centric Smart Street Light Monitoring and Visualization Platform for Campus Management

  • Somrudee Deepaisarn;Paphana Yiwsiw;Chanon Tantiwattanapaibul;Suphachok Buaruk;Virach Sornlertlamvanich
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.216-224
    • /
    • 2023
  • Smart lighting systems have become increasingly popular in several public sectors because of trends toward urbanization and intelligent technologies. In this study, we designed and implemented a web application platform to explore and monitor data acquired from lighting devices at Thammasat University (Rangsit Campus, Thailand). The platform provides a convenient interface for administrative and operative staff to monitor, control, and collect data from sensors installed on campus in real time for creating geographically specific big data. Platform development focuses on both back- and front-end applications to allow a seamless process for recording and displaying data from interconnected devices. Responsible persons can interact with devices and acquire data effortlessly, minimizing workforce and human error. The collected data were analyzed using an exploratory data analysis process. Missing data behavior caused by system outages was also investigated.

Distributed Dynamic Lighting Energy Management System based on Zigbee Mesh Network (지그비 메쉬망 기반 분산형 동적 에너지 관리 시스템)

  • Kim, Sam-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.85-91
    • /
    • 2014
  • Nowadays, Dynamic lighting control and management skills are studied and used. If the system which is to manage multiple intelligent spot applied ubiquitous service technology is built with decision making and used in the complex intelligent space like a apartment then will improve energy efficiency and provide comfortability in optimal conditions. To solve this problem distributed autonomous control middleware and energy management system which process data gathering by zigbee mesh network and search proper services to save energy by the existing state of things is necessary. In paper we designed DDLEMS (Distributed Dynamic Lighting Energy Management System) that is to service duplex communication embedded by software based home server platform to provide mobile services in the smart place and support decision making about energy saving to the best use of wireless censor node and controled network, energy display devices.

Car Sealer Monitoring System Using ICT Technology (ICT 기술을 융합한 자동차 실러도포 공정 모니터링 시스템)

  • Kim, Ho Yeon;Park, Jong Seop;Park, Yo Han;Cho, Jae-Soo
    • Journal of Information Technology Services
    • /
    • v.17 no.3
    • /
    • pp.53-61
    • /
    • 2018
  • In this paper, we propose a car sealing monitoring system combined with ICT Technology. The automobile sealer is an adhesive used to bond inner and outer panels of doors, hoods and trunks of an automobile body. The proposed car sealer monitoring system is a system that can accurately and automatically inspect the condition of the automobile sealer coating process in the general often factory production line where the lighting change is very severe. The sealer inspection module checks the state of the applied sealer using an area scan camera. The vision inspection algorithm is adaptive to various lighting environments to determine whether the sealer is defective or not. The captured images and test results are configured to send the task results to the task manager in real-time as a smartphone app. Vision inspection algorithms in the plant outdoors are very vulnerable to time-varying external light sources and by configuring a monitoring system based on smart mobile equipment, it is possible to perform production monitoring regardless of time and place. The applicability of this method was verified by applying it to an actual automotive sealer application process.

Smart Affect Jewelry based on Multi-modal (멀티 모달 기반의 스마트 감성 주얼리)

  • Kang, Yun-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1317-1324
    • /
    • 2016
  • Utilizing the Arduino platform to express the emotions that reflect the colors expressed the jewelry. Emotional color expression utilizes Plutchik's Wheel of Emotions model was applied to the similarity of emotions and colors. It receives the recognized value from the temperature, lighting, sound, pulse sensor and gyro sensor of a smart jewelery that can be easily accessible from your smartphone processes that recognize and process the emotion applied the rules of inference based on ontology. The emotional feelings color depending on the color looking for the emotion seen in context and applied to the smart LED jewelry. The emotion and the color combination of contextual information extracted from the recognition sensors are reflected in the built-in smart LED Jewelry depending on the emotions of the wearer. Take a light plus the emotion in a smart jewelery can represent the emotions of the situation, the doctor will be able to be a tool of representation.

Facial Shape Recognition Using Self Organized Feature Map(SOFM)

  • Kim, Seung-Jae;Lee, Jung-Jae
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.104-112
    • /
    • 2019
  • This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation forthe identification of a face shape. The proposed algorithm uses face shape asinput information in a single camera environment and divides only face area through preprocessing process. However, it is not easy to accurately recognize the face area that is sensitive to lighting changes and has a large degree of freedom, and the error range is large. In this paper, we separated the background and face area using the brightness difference of the two images to increase the recognition rate. The brightness difference between the two images means the difference between the images taken under the bright light and the images taken under the dark light. After separating only the face region, the face shape is recognized by using the self-organization feature map (SOFM) algorithm. SOFM first selects the first top neuron through the learning process. Second, the highest neuron is renewed by competing again between the highest neuron and neighboring neurons through the competition process. Third, the final top neuron is selected by repeating the learning process and the competition process. In addition, the competition will go through a three-step learning process to ensure that the top neurons are updated well among neurons. By using these SOFM neural network algorithms, we intend to implement a stable and robust real-time face shape recognition system in face shape recognition.

Recognition of Passport MRZ Information Using Combined Neural Networks (결합 신경망을 이용한 여권 MRZ 정보 인식)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.149-157
    • /
    • 2019
  • In case of reading passport using a smart phone in contrast with a dedicated passport reading system, MRZ(Machine Readable Zone) character recognition can be hard when the character strokes were broken, touched or blurred according to the lighting condition, and the position and size of MRZ character lines were varied due to the camera distance and angle. In this paper, the effective recognition algorithm of the passport MRZ information using a combined neural network recognizer of CNN(Convolutional Neural Network) and ANN( Artificial Neural Network), is proposed under the various sized and skewed passport images. The MRZ line detection using connected component analysis algorithm and the skew correction using perspective transform algorithm are also designed in order to achieve effective character segmentation results. Each of the MRZ field recognition results is verified by using five check digits for deciding whether retrying the recognition process of passport MRZ information or not. After we implement the proposed recognition algorithm of passport MRZ information, the excellent recognition performance of the passport MRZ information was obtained in the experimental results for PC off-line mode and smart phone on-line mode.

Convergence Education Modeling for Teaching Integration of IoT with 3D Printing Based on Manufacturing Chemical Product by Production Companies

  • Kim, Chigon;Park, Jong-Youel;Park, Dea-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.55-60
    • /
    • 2020
  • This study aims to apply Arduino and 3D printing technology considered as a key subject in the age of 4th industrial revolution which is a step 1 for customizing and applying the process of production by chemical molding companies producing environment-friendly biodegradable packaging materials to the 3D printing teaching in universities. Step 3 is applied to IoT for Arduino application, and 3D printing technology is also used on the basis of teaching creative integrated human resource. Integration of Arduino with 3D printers is based on the assumption that middle- and high-school students can learn it step by step to higher levels and university students majoring or not majoring in computing science can also have computing skills for solving 3D printing-based problems. For IoT application in this study, the 3D printing technology is applied to the external shape of products for producing an Arduino-based lighting fixture. The applied 3D printing technology is further extended to teaching modeling of producing packaging materials by chemical product molding companies in the age of 4th industrial revolution.

Development of a Vision System for the Complete Inspection of CO2 Welding Equipment of Automotive Body Parts (자동차 차체부품 CO2용접설비 전수검사용 비전시스템 개발)

  • Ju-Young Kim;Min-Kyu Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.179-184
    • /
    • 2024
  • In the car industry, welding is a fundamental linking technique used for joining components, such as steel, molds, and automobile parts. However, accurate inspection is required to test the reliability of the welding components. In this study, we investigate the detection of weld beads using 2D image processing in an automatic recognition system. The sample image is obtained using a 2D vision camera embedded in a lighting system, from where a portion of the bead is successfully extracted after image processing. In this process, the soot removal algorithm plays an important role in accurate weld bead detection, and adopts adaptive local gamma correction and gray color coordinates. Using this automatic recognition system, geometric parameters of the weld bead, such as its length, width, angle, and defect size can also be defined. Finally, on comparing the obtained data with the industrial standards, we can determine whether the weld bead is at an acceptable level or not.