• Title/Summary/Keyword: Smart illuminating system

Search Result 38, Processing Time 0.021 seconds

Energy Saving Smart Illuminating System Implementation Based on Obstacle Environment Presetting (장애환경설정 기반의 에너지절약 지능형 조명시스템 구현)

  • Kim, Young Bin;Ryu, Conan K.R.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2786-2791
    • /
    • 2014
  • This paper describes the smart illuminating system based on the obstacle environmental presetting to improve the user convenience to easy lighting and energy conservation. Obstacle environment has trouble controlling the illuminating equipment using manual buttons in certain circumstances, which requires a smart remote controller. The smart remote controller is operated by the smart phone, motion sensor and timer to turn on and off the lamps. The event sensor module transmits the signals of the event occurrence to equipment on the remote place when smart phone and motion sensor detect an event, and the illuminator received the event turn on or off the lamp. The system results in energy saving by simple on/off control and manipulating the operating time with controlling the illuminating system preset by user's obstacle or preference circumstances. The proposed system implementation is experimented to figure out the energy saving about13.5w/h and the optimized convenience control.

A Smart Lighting Management System with Satisfaction of User's Lighting Requirements (사용자 요구조도 만족 스마트 조명 관리시스템)

  • Shin, Dae-Sik;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.1-8
    • /
    • 2013
  • In this paper, we proposed a smart lighting management system controls the lighting efficiently to reduce energy consumption while satisfying user's lighting requirements. The proposed system considers the available daylight intensity and indoor light source to satisfy the lighting requirements of each user according to the work environment. In addition, for user convenience, we have developed different user interfaces for lighting control including local interface, and remote interface through internet or Bluetooth for personal computer as well as smart phones. The proposed system satisfies the lighting requirements of each user according to the corresponding work environment. The proposed smart lighting management system utilizes the lighting energy efficiently, and can be considered a significant contribution towards future green buildings.

A Study of Smart Uninterruptible Power Supply Capable High Efficiency Drive (고효율 운전이 가능한 지능형 무정전 전원장치에 관한 연구)

  • Eom, Tae-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.61-66
    • /
    • 2013
  • In this paper, a control scheme with the capability of high efficiency, which is realized by predicting the conditions of a load power and an input power, is proposed for the uninterruptible power supply (UPS). Generally, on-line UPS system supplies a constant voltage and a constant frequency (CVCF). However, the efficiency of the On-line UPS system can be reduced due to the switching losses of semiconductor devices during the power conversion. The these losses are improved by the proposed smart UPS with the high efficiency drive system, which is realized by analysing and predicting the conditions of a load power and an input power.

Renewable Source and Hybrid System Modeling for Smart Grid (스마트그리드를 위한 신재생에너지원과 하이브리드시스템 모델링)

  • Cho, Jae-Hoon;Hong, Won-Pyo;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.109-121
    • /
    • 2010
  • Recently, smart grid for solving energy problems have been receiving growing attention. Also, renewable energy sources such as photovoltaic and fuel cell as future energy for realizing smart grid have been widely studied. On the other hand, hybrid structures have been proposed since the output power of these renewable energy sources is usually dependent on weather conditions. This paper proposes a hybrid system involving a proper photovoltaic in the hybrid system, Polymer Elecrolyte Membrane Fuel Cell with water electrolyzer and ultracapacitor. The results of simulation and output of the proposed model are established and analysed by Matlab/Simulink and SimPowerSystems.

A Study on Estimation Method of Outage Cost caused by Vulnerabilities of SCADA System (SCADA 시스템의 보안취약성을 고려한 정전비용 산정기법에 관한 연구)

  • Kim, Balho-H.;Kang, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.90-99
    • /
    • 2011
  • As power industry evolves into Smart Grid scheme, previously closed power systems are being integrated into public communication networks. It increases the controllability and efficiency of the system, but also accompanies many cyber threats having existed in the Internet to the SCADA system. Therefore it is required to apply security countermeasures to the Smart Grid, which brings about investment costs. There have been few approaches to assess risks from cyber attack especially in electric power industry. So this paper proposes a methodology to assess quantitative impacts of various types of cyber attacks to a power system, and also shows the feasibility of the method through a case study.

A Development of Agent-Based IEDs for Integration Control of Building Microgrid in Smart Green Building (그린빌딩에서의 빌딩마이크로그리드 통합제어를 위한 에이전트용 IED 개발)

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.35-43
    • /
    • 2012
  • In this paper, a development of agent-based IEDs(Intelligent electronic devices) for integration control of building microgrid in smart green building are proposed. To manage and control this complex energy system of smart green buildings, multi-agent system based networks is needed. Thus, several IEDs for utilizing multi-agent system are developed and modified for the their verification of performance as agent modules functions in the integrated experimental equipment. The good performance of these IED agents are verified from experimental results obtained from seamless bi-directional communication by SOAP/XML protocol between PC agent and IED agent.

The Optical Design and Simulation Results for LED Stage Lighting System (무대조명용 LED 광학시스템 설계 및 시뮬레이션 결과)

  • Park, Kwang-Woo;Joo, Jae-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.30-36
    • /
    • 2015
  • The principle of an illumination and projection system including LED light sources for a spot type stage lighting system was presented, and its optical system was designed with optimizing parameters by the analytical methods. A dichroic mirror incorporated with an illumination system to optimizing LED source positions and to obtain the compact system. The projection system was optimized with specific constraints such as a chromatic aberration, distortion aberration and angle of incidence angles. Optimized design system has a beam angle from $10^{\circ}$ to $45^{\circ}$, and its illuminance was 4,500lux at distance of 6m on the work plane.

A Study on Programmable Logic-based Smart Peak Power Control System (프로그램 로직 기반의 스마트 최대 전력 관리 시스템에 관한 연구)

  • Lee, Woo-Cheol;Kwon, Sung-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.92-99
    • /
    • 2014
  • The paper is related to smart maximum power system based on program logic. Especially, this system compares the total demand power with the target power by using the signal from the digital kilo watt meter. Based on the power information by the maximum power control equipment the consumed future power is anticipated. In addition, through consumed future power the controllable target power is set, and it applies on the maximum power control equipment. User or manager would control the load efficiently through the simple programming which could control load based on the control sequence and relay. To begin with the conventional maximum power control algorithm is surveyed, and the smart maximum power control system based on program logic is used, and the new algorithm from full load to proportion shut down is proposed by using PLC program. the validity of the proposed control scheme is investigated by both simulation results.

A Study on Design of Home Energy Management System to Induce Price Responsive Demand Response to Real Time Pricing of Smart Grid (스마트그리드 실시간요금과 연동되는 수요반응을 유도하기 위한 HEMS 설계에 관한 연구)

  • Kang, Dong-Joo;Park, Sun-Joo;Choi, Soo-Jung;Han, Seong-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.39-49
    • /
    • 2011
  • Smart Grid has two main objectives on both supply and demand aspects which are to distribute the renewable energy sources on supply side and to develop realtime price responses on demand side. Renewable energy does not consume fossil fuels, therefore it improves the eco-friendliness and saves the cost of power system operation at the same time. Demand response increases the flexibility of the power system by mitigating the fluctuation from renewable energies, and reduces the capacity investment cost by shedding the peak load to off-peak periods. Currently Smart Grid technologies mainly focus on energy monitoring and display services but it has been proved that enabling technologies can induce the higher demand responses through many pilot projects in USA. On this context, this paper provides a price responsive algorithm for HEMS (home energy management system) on the real time pricing environment. This paper identifies the demand response as a core function of HEMS and classifies the demand into 3 categories of fixed, transferable, and realtime responsive loads which are coordinated and operated for the utility maximization or cost minimization with the optimal usage combination of three kinds of demand.

Modeling, Control and Simulation of Microturbine Generator for Distributed Generation System in Smart Grid Application

  • Hong, Won-Pyo;Cho, Jae-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.57-66
    • /
    • 2009
  • Microturbines system (MTS) are currently being deployed as small scale on-site distributed generators for microgrids and smart grids. In order to fully exploit DG potentialities, advanced integrated controls that include power electronics facilities, communication technologies and advanced modeling are required. Significant expectations are posed on gas microturbines that can be easily installed in large commercial and public buildings. Modeling, control, simulation of microturbine generator based distributed generation system in smart grid application of buildings for both grid-connected and islanding conditions are presented. It also incorporates modeling and simulation of MT with a speed control system of the MT-permanent magnet synchronous generator to keep the speed constant with load variation. Model and simulations are performed using MATLAB, Simulink and SimPowerSystem software package. The model is built from the dynamics of each part with their interconnections. This simplified model is a useful tool for studying the various operational aspects of MT and is also applicable with building cooling, heating and power (BCHP) systems