• Title/Summary/Keyword: Smart glass

Search Result 148, Processing Time 0.028 seconds

Non-constraining Online Signature Reconstruction System for Persons with Handwriting Problems

  • Abbadi, Belkacem;Mostefai, Messaoud;Oulefki, Adel
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.138-146
    • /
    • 2015
  • This paper presents a new non-constraining online optical handwritten signature reconstruction system that, in the main, makes use of a transparent glass pad placed in front of a color camera. The reconstruction approach allows efficient exploitation of hand activity during a signing process; thus, the system as a whole can be seen as a viable alternative to other similar acquisition tools. This proposed system allows people with physical or emotional problems to carry out their own signatures without having to use a pen or sophisticated acquisition system. Moreover, the developed reconstruction signature algorithms have low computational complexity and are therefore well suited for a hardware implementation on a dedicated smart system.

Damage and Failure Detection of CFRP Using Optical Fiber Vibration Sensor (광섬유 진동센서를 이용한 탄소섬유강화 복합재료의 손상 및 파손검출)

  • 양유창;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.254-257
    • /
    • 2001
  • An intensity-based optical fiber vibration sensor is applied to detect and evaluate damages and fiber failure of composites. The optical fiber vibration sensor is constructed by placing two cleaved fiber end, one of which is cantilevered in a hollow glass tube. The movement of the cantilevered section lags behind the rest of the sensor in response to an applied vibration and the amount of light coupled between the two fibers is thereby modulated. Vibration characteristics of the optical fiber vibration sensor are investigated. Surface mounted optical fiber vibration sensor is used in tensile and indentation test. Experimental results show that the optical fiber sensor can detect damages and fiber failure of composites correctly.

  • PDF

Development of Self-Diagnosis Concrete for Damage (자기손상을 스스로 나타내는 콘크리트 개발)

  • 윤요현;김이성;김화중
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.161-166
    • /
    • 2003
  • The purpose Performance degradation of concrete structures is generally caused by the deteriorations, such as surface collapse, pop-out, crack, and so on. It may result in serious defects of the concrete structures. Thus it is very important to detect and repair the defects of concrete structures within a proper time to assure the structural safety. However, the defects due to the deteriorations are usually difficult to find by visual inspection. A sensor is developed in this study, which may give early indications for degradation of concrete structures and show the locations of the demage. Cracks can be defected by the liquid in a small glass capsules which are embedded in the concrete structures. This paper discusses the applicability of that was developed smart concrete.

  • PDF

Damage and Failure Detection of Composites Using Optical Fiber Vibration Sensor (광섬유 진동센서를 이용한 복합재료의 손상 및 파손검출)

  • Yang, Y.C.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.547-552
    • /
    • 2001
  • An intensity-based optical fiber vibration sensor is applied to detect and evaluate damages and fiber failure of composites. The optical fiber vibration sensor is constructed by placing two cleaved fiber end, one of which is cantilevered in a hollow glass tube. The movement of the cantilevered section lags behind the rest of the sensor in response to an applied vibration and the amount of light coupled between the two fibers is thereby modulated. Vibration characteristics of the optical fiber vibration sensor are investigated. Surface mounted optical fiber vibration sensor is used in tensile and indentation test. Experimental results show that the optical fiber sensor can detect damages and fiber failure of composites correctly.

  • PDF

Technology Trend and Requirement of Mobile Displays Using Low-Temperature Poly-Si (LTPS) Technologies

  • Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.409-412
    • /
    • 2007
  • A lot of research for system-on-panel(SOP) have been done to integrate display systems including data driver, gate driver, timing controller, DC-DC converter, and smart functions such as embedded touch screen, ambient brightness sensing and luminance control, finger printing on the glass. Recently, the cost of an one-chip driver IC with various functions has decreased rapidly, and new mobile display interface technologies have been introduced. So it is necessary to examine the feasibility of SOP for practical mobile applications. In this paper, we will re-examine LTPS technologies for mobile displays in terms of various aspects and discuss the practical limitations on SOP technology and future technology trend of mobile displays.

  • PDF

Exploring the Social Proxemics of Human-Drone Interaction

  • Han, Jeonghye;Moore, Dylan;Bae, Ilhan
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • Drones will evolve from military to personal or social purposes. How can people socially interact with a drone that is familiar to them? This study explored the social proximity of human drone interaction with safety glass wall between participants and drone. The experiment results showed that drone's altitude, size and gender factor did not significantly affect social proxemics as to what extent participants got closer to hovering drones by the limitation of the distance from the safety wall. However, it shows a tendency that participants more closely approached an eye-level drone compared with an overhead drone, and females tended to approach more closely males. This study consequently demonstrated that most participants are nearly ready to allow a near field operation of social drone under safe conditions.

Cleaning Methods to Effectively Remove Peanut Allergens from Food Facilities or Utensil Surfaces (식품 시설 또는 조리도구 표면에서 땅콩 알레르겐을 효과적으로 제거하는 세척 방법)

  • Sol-A Kim;Jeong-Eun Lee;Jaemin Shin;Won-Bo Shim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.4
    • /
    • pp.228-235
    • /
    • 2023
  • Peanut is a well-known food allergen that causes adverse reactions ranging from mild urticaria to life-threatening anaphylaxis. Consumers suffering from peanut allergies should thus avoid consuming undeclared peanuts in processed foods. Therefore, effective cleaning methods are needed to remove food allergens from manufacturing facilities. To address this, wet cleaning methods with washing water at different temperatures, abstergents (peracetic acid, sodium bicarbonate, dilute sodium hypochlorite, detergent), and cleaning tools (brush, sponge, paper towel, and cotton) were investigated to remove peanuts from materials used in food manufacture, including plastics, wood, glass, and stainless steel. Peanut butter was coated on the surface of the glass, wood, stainless steel, and plastic for 30 min and cleaned using wet cleaning. The peanut residue on the cleaned surfaces was swabbed and determined using an optimized enzyme-linked immunosorbent assay (ELISA). Cleaning using a brush and hot water above 50℃ showed an effective reduction of peanut residue from the surface. However, removing peanuts from wooden surfaces was complicated. These results provide information for selecting appropriate materials in food manufacturing facilities and cleaning methods to remove food allergens. Additionally, the cleaning methods developed in this study can be applied to further research on removing other food allergens.

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

3-D image display by use projection technique (프로젝션 기술을 이용한 3차원 입체영상 표시)

  • Park, Sang-gug
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.665-668
    • /
    • 2012
  • This paper describes research results that 2-D contents, which display in smart phone or tablet PC to be able to see the 3-D stereoscopic by use projection technique. For this research, we have construct four brown-glass into pyramid shape, project each of the four LCD monitors that output from the PC screen into of the four inverted pyramid-shaped mirror and display the 3-D image to the center of the mirror system. For the test, We use tablet PC and server PC(desktop PC) connected by wireless network, tablet PC select contents which is displayed in the server PC, and displayed selected contents into the 3-D image to the center of the mirror system. Through the test, we have showed that it is possible to display 3-D stereoscopic to the 2-D contents by use projection technique. Although, display image is depending on the observer's viewing angle.

  • PDF

Prediction of Output Power for PV Module with Tilted Angle and Structural Design (태양광 모듈의 구조디자인과 설치각도에 따른 출력예측)

  • Ko, Jae-Woo;Yun, Na-Ri;Min, Yong-Ki;Jung, Tae-Hee;Won, Chang-Sub;Ahn, Hyung-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.371-375
    • /
    • 2013
  • A new model about output power prediction of PV module with various tilted angles and cell to cell distances has been proposed in this paper. Light intensity arrived on a solar cell could be changed by characteristics of PV module materials. Refractive indices, thickness and absorption coefficients of glass, EVA, solar cell and Backsheet are used to predict output. Also, the incident angle of light is changed 0 to 90[$^{\circ}$] and cell to cell distances are 5, 10 15[mm]. Two types of light incident on a solar cell are considered which are direct to a solar cell and reflected from Backsheet. The intensity of the incident light directly into the solar cell is reduced through glass and EVA about 17.5[%] in theoretical way. It has an error of 2.26[%] compared with experimental result. The results for compare theoretical with experimental data is validated within the error of 6.3[%]. This paper would be a research material to predict output power when the PV module is installed outdoor or a building.