• Title/Summary/Keyword: Smart farm data

Search Result 221, Processing Time 0.034 seconds

Development of AI and IoT-based smart farm pest prediction system: Research on application of YOLOv5 and Isolation Forest models (AI 및 IoT 기반 스마트팜 병충해 예측시스템 개발: YOLOv5 및 Isolation Forest 모델 적용 연구)

  • Mi-Kyoung Park;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.771-780
    • /
    • 2024
  • In this study, we implemented a real-time pest detection and prediction system for a strawberry farm using a computer vision model based on the YOLOv5 architecture and an Isolation Forest Classifier. The model performance evaluation showed that the YOLOv5 model achieved a mean average precision (mAP 0.5) of 78.7%, an accuracy of 92.8%, a recall of 90.0%, and an F1-score of 76%, indicating high predictive performance. This system was designed to be applicable not only to strawberry farms but also to other crops and various environments. Based on data collected from a tomato farm, a new AI model was trained, resulting in a prediction accuracy of over 85% for major diseases such as late blight and yellow leaf curl virus. Compared to the previous model, this represented an improvement of more than 10% in prediction accuracy.

A Swine Management System for PLC baed on Integrated Image Processing Technique (통합 이미지 처리기법 기반의 PLF를 위한 Swine 관리 시스템)

  • Arellano, Guy;Cabacas, Regin;Balontong, Amem;Ra, In-Ho
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • The demand for food rises proportionally as population grows. To be able to achieve sustainable supply of livestock products, efficient farm management is a necessity. With the advancement in technology it also brought innovations that could be harness in order to achieve better productivity in animal production and agriculture. Precision Livestock Farming (PLF) is a budding concept of making use of smart sensors or available devices to automatically and continuously monitor and manage livestock production. With this concept, this paper introduces a swine management system that integrates image processing technique for weight monitoring. This system captures pig images using camera, evaluate and estimate the weight base on the captured image. It is comprised of Pig Module, Breeding Module, Health and Medication Module, Weighr Module, Data Analysis Module and Report Module to help swine farm administrators better understand the performance and situation of the swine farm. This paper aims to improve the management in both small and big livestock raisers.

TGC-based Fish Growth Estimation Model using Gaussian Process Regression Approach (가우시안 프로세스 회귀를 통한 열 성장 계수 기반의 어류 성장 예측 모델)

  • Juhyoung Sung;Sungyoon Cho;Da-Eun Jung;Jongwon Kim;Jeonghwan Park;Kiwon Kwon;Young Myoung Ko
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2023
  • Recently, as the fishery resources are depleted, expectations for productivity improvement by 'rearing fishery' in land farms are greatly rising. In the case of land farms, unlike ocean environments, it is easy to control and manage environmental and breeding factors, and has the advantage of being able to adjust production according to the production plan. On the other hand, unlike in the natural environment, there is a disadvantage in that operation costs may significantly increase due to the artificial management for fish growth. Therefore, profit maximization can be pursued by efficiently operating the farm in accordance with the planned target shipment. In order to operate such an efficient farm and nurture fish, an accurate growth prediction model according to the target fish species is absolutely required. Most of the growth prediction models are mainly numerical results based on statistical analysis using farm data. In this paper, we present a growth prediction model from a stochastic point of view to overcome the difficulties in securing data and the difficulty in providing quantitative expected values for inaccuracies that existing growth prediction models from a statistical point of view may have. For a stochastic approach, modeling is performed by introducing a Gaussian process regression method based on water temperature, which is the most important factor in positive growth. From the corresponding results, it is expected that it will be able to provide reference values for more efficient farm operation by simultaneously providing the average value of the predicted growth value at a specific point in time and the confidence interval for that value.

Prediction of Water Usage in Pig Farm based on Machine Learning (기계학습을 이용한 돈사 급수량 예측방안 개발)

  • Lee, Woongsup;Ryu, Jongyeol;Ban, Tae-Won;Kim, Seong Hwan;Choi, Heechul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1560-1566
    • /
    • 2017
  • Recently, accumulation of data on pig farm is enabled through the wide spread of smart pig farm equipped with Internet-of-Things based sensors, and various machine learning algorithms are applied on the data in order to improve the productivity of pig farm. Herein, multiple machine learning schemes are used to predict the water usage in pig farm which is known to be one of the most important element in pig farm management. Especially, regression algorithms, which are linear regression, regression tree and AdaBoost regression, and classification algorithms which are logistic classification, decision tree and support vector machine, are applied to derive a prediction scheme which forecast the water usage based on the temperature and humidity of pig farm. Through performance evaluation, we find that the water usage can be predicted with high accuracy. The proposed scheme can be used to detect the malfunction of water system which prevents the death of pigs and reduces the loss of pig farm.

Machine learning application for predicting the strawberry harvesting time

  • Yang, Mi-Hye;Nam, Won-Ho;Kim, Taegon;Lee, Kwanho;Kim, Younghwa
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.381-393
    • /
    • 2019
  • A smart farm is a system that combines information and communication technology (ICT), internet of things (IoT), and agricultural technology that enable a farm to operate with minimal labor and to automatically control of a greenhouse environment. Machine learning based on recently data-driven techniques has emerged with big data technologies and high-performance computing to create opportunities to quantify data intensive processes in agricultural operational environments. This paper presents research on the application of machine learning technology to diagnose the growth status of crops and predicting the harvest time of strawberries in a greenhouse according to image processing techniques. To classify the growth stages of the strawberries, we used object inference and detection with machine learning model based on deep learning neural networks and TensorFlow. The classification accuracy was compared based on the training data volume and training epoch. As a result, it was able to classify with an accuracy of over 90% with 200 training images and 8,000 training steps. The detection and classification of the strawberry maturities could be identified with an accuracy of over 90% at the mature and over mature stages of the strawberries. Concurrently, the experimental results are promising, and they show that this approach can be applied to develop a machine learning model for predicting the strawberry harvesting time and can be used to provide key decision support information to both farmers and policy makers about optimal harvest times and harvest planning.

Farm disease detection procedure by image processing on Smart Farming

  • Cho, Sokpal;Chung, Heechang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.405-407
    • /
    • 2017
  • The environmental change is affecting the farm products like tomato, and pepper, etc. This affects to lead smart farming yield. What is more, this inconstant conditions cause the farms to be infected by variety diseases. Therefore ICT technology is needed to detect and prevent the crops from being effected by diseases. This article suggests the procedure to help producer for identifying farms disease based on the detected image. This detects the kind of diseases with comparing the trained image data before and after disease emergence. First step monitors an image of farms and resize it. Its features are extracted on parameters such as color, and morphology, etc. The next steps are used for classification to classify the image as infected or non-infected. on the bassis of detection algorithm.

  • PDF

Intelligent Smart Farm A Study on Productivity: Focused on Tomato farm Households (지능형 스마트 팜 활용과 생산성에 관한 연구: 토마토 농가 사례를 중심으로)

  • Lee, Jae Kyung;Seol, Byung Moon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.3
    • /
    • pp.185-199
    • /
    • 2019
  • Korea's facility horticulture has developed remarkably in a short period of time. However, in order to secure international competitiveness in response to unfavorable surrounding conditions such as high operating costs and market opening, it is necessary to diagnose the problems of facility horticulture and prepare countermeasures through analysis. The purpose of this study was to analyze the case of leading farmers by introducing information and communication technology (ICT) in hydroponic cultivation agriculture and horticulture, and to examine how agricultural technology utilizing smart farm and big data of facility horticulture contribute to farm productivity. Crop growth information gathering and analysis solutions were developed to analyze the productivity change factors calculated from hydroponics tomato farms and strawberry farms. The results of this study are as follows. The application range of the leaf temperature was verified to be variously utilized such as house ventilation in the facility, opening and closing of the insulation curtain, and determination of the initial watering point and the ending time point. Second, it is necessary to utilize water content information of crop growth. It was confirmed that the crop growth rate information can confirm whether the present state of crops is nutrition or reproduction, and can control the water content artificially according to photosynthesis ability. Third, utilize EC and pH information of crops. Depending on the crop, EC values should be different according to climatic conditions. It was confirmed that the current state of the crops can be confirmed by comparing EC and pH, which are measured from the supplied EC, pH and draining. Based on the results of this study, it can be confirmed that the productivity of smart farm can be affected by how to use the information of measurement growth.

Real-Time Tomato Instance Tracking Algorithm by using Deep Learning and Probability Model (딥러닝과 확률모델을 이용한 실시간 토마토 개체 추적 알고리즘)

  • Ko, KwangEun;Park, Hyun Ji;Jang, In Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a smart farm technology is drawing attention as an alternative to the decline of farm labor population problems due to the aging society. Especially, there is an increasing demand for automatic harvesting system that can be commercialized in the market. Pre-harvest crop detection is the most important issue for the harvesting robot system in a real-world environment. In this paper, we proposed a real-time tomato instance tracking algorithm by using deep learning and probability models. In general, It is hard to keep track of the same tomato instance between successive frames, because the tomato growing environment is disturbed by the change of lighting condition and a background clutter without a stochastic approach. Therefore, this work suggests that individual tomato object detection for each frame is conducted by YOLOv3 model, and the continuous instance tracking between frames is performed by Kalman filter and probability model. We have verified the performance of the proposed method, an experiment was shown a good result in real-world test data.

Analysis of the growth environment and fruiting body quality of Pleurotus eryngii cultivated by Smart Farming (큰느타리(새송이)버섯 스마트팜 재배를 통한 생육환경 분석 및 자실체 품질 특성)

  • Kim, Kil-Ja;Kim, Da-Mi;An, Ho-Sub;Choi, Jin-Kyung;Kim, Seon-Gon
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.211-217
    • /
    • 2019
  • Currently, cultivation of mushrooms using the Information and Communication Technology (ICT)-based smart farming technique is increasing rapidly. The main environmental factors for growth of mushrooms are temperature, humidity, carbon dioxide (CO2), and light. Among all the mentioned factors, currently, only temperature has been maintained under automatic control. However, humidity and ventilation are controlled using a timer, based on technical experience.Therefore, in this study, a Pleurotus eryngii first-generation smart farm model was set up that can automatically control temperature, humidity, and ventilation. After installing the environmental control system and the monitoring device, the environmental condition of the mushroom cultivation room and the growth of the fruiting bodies were studied. The data thus obtained was compared to that obtained using the conventional cultivation method.In farm A, the temperature during the primordia formation stage was about 17℃, and was maintained at approximately 16℃ during the fruiting stage. The humidity was initially maintained at 95%, and the farm was not humidified after the primordia formation stage. There was no sensor for CO2 management, and the system was ventilated as required by observing the shape of the pileus and the stipe. It was observed that, the concentration of CO2 was between 700 and 2,500 ppm during the growth period. The average weight of the mushrooms produced in farm A was 125 g, and the quality was between that of the premium and the first grade.In farm B. The CO2 sensor was in use for measurement purposes only; the system was ventilated as required by observing the shape of the pileus and the stipe. During the growth period, the CO2 concentration was observed to be between 640 and 4,500 ppm. The average weight of the mushrooms produced in farm B was 102 g.These results indicate that the quality of the king oyster mushroom is determined by the environmental conditions, especially by the concentration of CO2. Thus, the data obtained in this study can be used as an optimal smart farm model, where, by improving the environmental control method of farm A, better quality mushrooms were obtained.

Designing an GRU-based on-farm power management and anomaly detection automation system (GRU 기반의 농장 내 전력량 관리 및 이상탐지 자동화 시스템 설계)

  • Hyeon seo Kim;Meong Hun Lee
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.18-23
    • /
    • 2024
  • Power efficiency management in smart farms is important due to its link to climate change. As climate change negatively impacts agriculture, future agriculture is expected to utilize smart farms to minimize climate impacts, but smart farms' power consumption may exacerbate the climate crisis due to the current electricity production system. Therefore, it is essential to efficiently manage and optimize the power usage of smart farms. In this study, we propose a system that monitors the power usage of smart farm equipment in real time and predicts the power usage one hour later using GRU. CT sensors are installed to collect power usage data, which are analyzed to detect and prevent abnormal patterns, and combined with IoT technology to efficiently manage and monitor the overall power usage. This helps to optimize power usage, improve energy efficiency, and reduce carbon emissions. The system is expected to improve not only the energy management of smart farms, but also the overall efficiency of energy use.