• Title/Summary/Keyword: Smart Segmentation

Search Result 141, Processing Time 0.032 seconds

EMS Ventilation Belt Using Stretch Sensor Effect on Respiratory Activation (스트레치 센서를 활용한 EMS 복압벨트가 호흡 활성화에 미치는 영향)

  • Kim, Dae-Yeon;Park, Jin-hee;Kim, Joo-yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.69-78
    • /
    • 2021
  • The development of smart healthcare wearables for health is accelerating. Among them, many wearable products using EMS electrical stimulation, which is one of the active research fields, have been released. However, the EMS wearable, which has been studied or released, is released in a comprehensive full-body suit that does not focus on muscle segmentation or a belt that covers the entire abdomen. Therefore, this study intends to use two breathing methods by applying an EMS pattern that subdivides specific muscles and attach a stretch sensor that can measure breathing to the abdominal pressure belt. The measurement method was conducted by inhaling and exhaling, and the subjects were 10 men in their 20s with healthy bodies. As a result of this study, the sensor's sensitivity was 5 and 3 mm, and the basic sensor in both thoracic and abdominal breathings and the EMS abdominal pressure belt showed improved respiration activation after applying electrical stimulation before and after application. It is concluded that, because of the two patterns produced based on the physical function, the difference in respiration activation effect and sensitivity between sensors could be confirmed with three sensors rather than not applying electrical stimulation suitable for the respiration method. Based on the results of this study, a follow-up study aims to develop breathing smart clothing that can be monitored in real time in clothing-type wearable products that incorporate EMS patterns and stretch sensors.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

Analyzing the Issue Life Cycle by Mapping Inter-Period Issues (기간별 이슈 매핑을 통한 이슈 생명주기 분석 방법론)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.25-41
    • /
    • 2014
  • Recently, the number of social media users has increased rapidly because of the prevalence of smart devices. As a result, the amount of real-time data has been increasing exponentially, which, in turn, is generating more interest in using such data to create added value. For instance, several attempts are being made to analyze the relevant search keywords that are frequently used on new portal sites and the words that are regularly mentioned on various social media in order to identify social issues. The technique of "topic analysis" is employed in order to identify topics and themes from a large amount of text documents. As one of the most prevalent applications of topic analysis, the technique of issue tracking investigates changes in the social issues that are identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has two limitations. First, when a new period is included, topic analysis must be repeated for all the documents of the entire period, rather than being conducted only on the new documents of the added period. This creates practical limitations in the form of significant time and cost burdens. Therefore, this traditional approach is difficult to apply in most applications that need to perform an analysis on the additional period. Second, the issue is not only generated and terminated constantly, but also one issue can sometimes be distributed into several issues or multiple issues can be integrated into one single issue. In other words, each issue is characterized by a life cycle that consists of the stages of creation, transition (merging and segmentation), and termination. The existing issue tracking methods do not address the connection and effect relationship between these issues. The purpose of this study is to overcome the two limitations of the existing issue tracking method, one being the limitation regarding the analysis method and the other being the limitation involving the lack of consideration of the changeability of the issues. Let us assume that we perform multiple topic analysis for each multiple period. Then it is essential to map issues of different periods in order to trace trend of issues. However, it is not easy to discover connection between issues of different periods because the issues derived for each period mutually contain heterogeneity. In this study, to overcome these limitations without having to analyze the entire period's documents simultaneously, the analysis can be performed independently for each period. In addition, we performed issue mapping to link the identified issues of each period. An integrated approach on each details period was presented, and the issue flow of the entire integrated period was depicted in this study. Thus, as the entire process of the issue life cycle, including the stages of creation, transition (merging and segmentation), and extinction, is identified and examined systematically, the changeability of the issues was analyzed in this study. The proposed methodology is highly efficient in terms of time and cost, as it sufficiently considered the changeability of the issues. Further, the results of this study can be used to adapt the methodology to a practical situation. By applying the proposed methodology to actual Internet news, the potential practical applications of the proposed methodology are analyzed. Consequently, the proposed methodology was able to extend the period of the analysis and it could follow the course of progress of each issue's life cycle. Further, this methodology can facilitate a clearer understanding of complex social phenomena using topic analysis.

Online Content Editing System to Edit Broadcasting and Personal Contents (방송 및 개인 콘텐츠 편집을 위한 온라인 콘텐츠 편집 시스템)

  • Yang, Chang Mo;Chung, Kwangsue
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.619-631
    • /
    • 2015
  • In this paper, we propose a new online content editing system to edit the broadcasting and personal contents. The proposed editing system consists of the content management server and the content editor, in which the content management server is used for storing the contents, while the content editor is used for editing the contents via the user interface. Unlike the existing content editing methods which edit the downloaded contents, the proposed editing system edits the contents stored in the content management server while the content editor plays them by using the streaming technology. However, it is not effective to edit the whole segments of contents while playing them by using the streaming technology. To resolve the problem, the proposed editing system performs the scene detection of the contents, and the detected scene information is used for playing and editing of contents. After completing the content editing, the edited information is uploaded to the content management server as a metadata format. In the proposed editing system, both scene and edited information are represented only as the metadata format, and the physical content segmentation according to the scene and edited information is not performed. The implementation results show that the proposed editing system provides similar performances with the existing content editing methods which use the content download and editing methods.

An Automatic Mobile Cell Counting System for the Analysis of Biological Image (생물학적 영상 분석을 위한 자동 모바일 셀 계수 시스템)

  • Seo, Jaejoon;Chun, Junchul;Lee, Jin-Sung
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • This paper presents an automatic method to detect and count the cells from microorganism images based on mobile environments. Cell counting is an important process in the field of biological and pathological image analysis. In the past, cell counting is done manually, which is known as tedious and time consuming process. Moreover, the manual cell counting can lead inconsistent and imprecise results. Therefore, it is necessary to make an automatic method to detect and count cells from biological images to obtain accurate and consistent results. The proposed multi-step cell counting method automatically segments the cells from the image of cultivated microorganism and labels the cells by utilizing topological analysis of the segmented cells. To improve the accuracy of the cell counting, we adopt watershed algorithm in separating agglomerated cells from each other and morphological operation in enhancing the individual cell object from the image. The system is developed by considering the availability in mobile environments. Therefore, the cell images can be obtained by a mobile phone and the processed statistical data of microorganism can be delivered by mobile devices in ubiquitous smart space. From the experiments, by comparing the results between manual and the proposed automatic cell counting we can prove the efficiency of the developed system.

AdaBoost-based Gesture Recognition Using Time Interval Window Applied Global and Local Feature Vectors with Mono Camera (모노 카메라 영상기반 시간 간격 윈도우를 이용한 광역 및 지역 특징 벡터 적용 AdaBoost기반 제스처 인식)

  • Hwang, Seung-Jun;Ko, Ha-Yoon;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.471-479
    • /
    • 2018
  • Recently, the spread of smart TV based Android iOS Set Top box has become common. This paper propose a new approach to control the TV using gestures away from the era of controlling the TV using remote control. In this paper, the AdaBoost algorithm is applied to gesture recognition by using a mono camera. First, we use Camshift-based Body tracking and estimation algorithm based on Gaussian background removal for body coordinate extraction. Using global and local feature vectors, we recognized gestures with speed change. By tracking the time interval trajectories of hand and wrist, the AdaBoost algorithm with CART algorithm is used to train and classify gestures. The principal component feature vector with high classification success rate is searched using CART algorithm. As a result, 24 optimal feature vectors were found, which showed lower error rate (3.73%) and higher accuracy rate (95.17%) than the existing algorithm.

Development of Android Smart Phone App for Analysis of Remote Sensing Images (위성영상정보 분석을 위한 안드로이드 스마트폰 앱 개발)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.561-570
    • /
    • 2010
  • The purpose of this study is to develop an Android smartphone app providing analysis capabilities of remote sensing images, by using mobile browsing open sources of gvSIG, open source remote sensing software of OTB and open source DBMS of PostgreSQL. In this app, five kinds of remote sensing algorithms for filtering, segmentation, or classification are implemented, and the processed results are also stored and managed in image database to retrieve. Smartphone users can easily use their functions through graphical user interfaces of app which are internally linked to application server for image analysis processing and external DBMS. As well, a practical tiling method for smartphone environments is implemented to reduce delay time between user's requests and its processing server responses. Till now, most apps for remotely sensed image data sets are mainly concerned to image visualization, distinguished from this approach providing analysis capabilities. As the smartphone apps with remote sensing analysis functions for general users and experts are widely utilizing, remote sensing images are regarded as information resources being capable of producing actual mobile contents, not potential resources. It is expected that this study could trigger off the technological progresses and other unique attempts to develop the variety of smartphone apps for remote sensing images.

AI-Based Object Recognition Research for Augmented Reality Character Implementation (증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구)

  • Seok-Hwan Lee;Jung-Keum Lee;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1321-1330
    • /
    • 2023
  • This study attempts to address the problem of 3D pose estimation for multiple human objects through a single image generated during the character development process that can be used in augmented reality. In the existing top-down method, all objects in the image are first detected, and then each is reconstructed independently. The problem is that inconsistent results may occur due to overlap or depth order mismatch between the reconstructed objects. The goal of this study is to solve these problems and develop a single network that provides consistent 3D reconstruction of all humans in a scene. Integrating a human body model based on the SMPL parametric system into a top-down framework became an important choice. Through this, two types of collision loss based on distance field and loss that considers depth order were introduced. The first loss prevents overlap between reconstructed people, and the second loss adjusts the depth ordering of people to render occlusion inference and annotated instance segmentation consistently. This method allows depth information to be provided to the network without explicit 3D annotation of the image. Experimental results show that this study's methodology performs better than existing methods on standard 3D pose benchmarks, and the proposed losses enable more consistent reconstruction from natural images.

Effect of food-related lifestyle, and SNS use and recommended information utilization on dining out (혼밥 및 외식소비 관련 식생활라이프스타일과 SNS 이용 및 추천정보활용의 영향)

  • Jin A Jang
    • Journal of Nutrition and Health
    • /
    • v.56 no.5
    • /
    • pp.573-588
    • /
    • 2023
  • Purpose: This study aimed to examine social networking service (SNS) use and recommended information utilization (SURU) according to the food-related lifestyles (FRLs) of consumers and analyze how the interaction between the FRL and SURU affects the practice of eating alone and visiting restaurants. Methods: Data on 4,624 adults in their 20s to 50s were collected from the 2021 Consumer Behavior Survey for Food. Statistical methods included factor analysis, K-means cluster analysis, the complex samples general linear model, the complex samples Rao-Scott χ2 test, and the general linear model. Results: The following three factors were extracted from the FRL data: Convenience pursuit, rational consumption pursuit, and gastronomy pursuit, and the subjects were classified into three groups, namely the rational consumption, convenient gastronomy, and smart gourmet groups. An examination of the difference in SURU according to the FRL showed that the smart gourmet group had the highest score. The result of analyzing the effects of the FRL and SURU on eating alone revealed that both the main effect and the interaction effect were significant (p < 0.01, p < 0.001). The higher the SURU, the higher the frequency of eating alone in the convenience pursuit, and gastronomy pursuit groups. The main and interaction effects of the FRL and SURU on the frequency of eating out were also significant (p < 0.01, p < 0.001). In all the FRL groups, the higher the SURU level, the higher the frequency of visiting restaurants. Specifically, the two groups with convenience and gastronomic tendencies showed a steeper increase. Conclusion: This study provides important basic data for research on consumer behavior related to food SNS, market segmentation of restaurant consumers, and development of marketing strategies using SNS in the future.

Multi-resolution SAR Image-based Agricultural Reservoir Monitoring (농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용)

  • Lee, Seulchan;Jeong, Jaehwan;Oh, Seungcheol;Jeong, Hagyu;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.497-510
    • /
    • 2022
  • Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.