• Title/Summary/Keyword: Smart Segmentation

Search Result 141, Processing Time 0.025 seconds

A Fast Algorithm for Korean Text Extraction and Segmentation from Subway Signboard Images Utilizing Smartphone Sensors

  • Milevskiy, Igor;Ha, Jin-Young
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.161-166
    • /
    • 2011
  • We present a fast algorithm for Korean text extraction and segmentation from subway signboards using smart phone sensors in order to minimize computational time and memory usage. The algorithm can be used as preprocessing steps for optical character recognition (OCR): binarization, text location, and segmentation. An image of a signboard captured by smart phone camera while holding smart phone by an arbitrary angle is rotated by the detected angle, as if the image was taken by holding a smart phone horizontally. Binarization is only performed once on the subset of connected components instead of the whole image area, resulting in a large reduction in computational time. Text location is guided by user's marker-line placed over the region of interest in binarized image via smart phone touch screen. Then, text segmentation utilizes the data of connected components received in the binarization step, and cuts the string into individual images for designated characters. The resulting data could be used as OCR input, hence solving the most difficult part of OCR on text area included in natural scene images. The experimental results showed that the binarization algorithm of our method is 3.5 and 3.7 times faster than Niblack and Sauvola adaptive-thresholding algorithms, respectively. In addition, our method achieved better quality than other methods.

Smart Phone Road Signs Recognition Model Using Image Segmentation Algorithm

  • Huang, Ying;Song, Jeong-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.887-890
    • /
    • 2012
  • Image recognition is one of the most important research directions of pattern recognition. Image based road automatic identification technology is widely used in current society, the intelligence has become the trend of the times. This paper studied the image segmentation algorithm theory and its application in road signs recognition system. With the help of image processing technique, respectively, on road signs automatic recognition algorithm of three main parts, namely, image segmentation, character segmentation, image and character recognition, made a systematic study and algorithm. The experimental results show that: the image segmentation algorithm to establish road signs recognition model, can make effective use of smart phone system and application.

  • PDF

Text Line Segmentation of Handwritten Documents by Area Mapping

  • Boragule, Abhijeet;Lee, GueeSang
    • Smart Media Journal
    • /
    • v.4 no.3
    • /
    • pp.44-49
    • /
    • 2015
  • Text line segmentation is a preprocessing step in OCR, which can significantly influence the accuracy of document analysis applications. This paper proposes a novel methodology for the text line segmentation of handwritten documents. First, the average width of the connected components is used to form a 1-D Gaussian kernel and a smoothing operation is then applied to the input binary image. The adaptive binarization of the smoothed image forms the final text lines. In this work, the segmentation method involves two stages: firstly, the large connected components are labelled as a unique text line using text line area mapping. Secondly, the final refinement of the segmentation is performed using the Euclidean distance between the text line and small connected components. The group of uniquely labelled text candidates achieves promising segmentation results. The proposed approach works well on Korean and English language handwritten documents captured using a camera.

Adaptive Character Segmentation to Improve Text Recognition Accuracy on Mobile Phones (모바일 시스템에서 텍스트 인식 위한 적응적 문자 분할)

  • Kim, Jeong Sik;Yang, Hyung Jeong;Kim, Soo Hyung;Lee, Guee Sang;Do, Luu Ngoc;Kim, Sun Hee
    • Smart Media Journal
    • /
    • v.1 no.4
    • /
    • pp.59-71
    • /
    • 2012
  • Since mobile phones are used as common communication devices, their applications are increasingly important to human's life. Using smart-phones camera to collect daily life environment's information is one of targets for many applications such as text recognition, object recognition or context awareness. Studies have been conducted to provide important information through the recognition of texts, which are artificially or naturally included in images and movies acquired from mobile phones. In this study, a character segmentation method that improves character-recognition accuracy in images obtained from mobile phone cameras is proposed. The proposed method first classifies texts in a given image to printed letters and handwritten letters since segmentation approaches for them are different. For printed letters, rough segmentation process is conducted, then the segmented regions are integrated, deleted, and re-segmented. Segmentation for the handwritten letters is performed after skews are corrected and the characters are classified by integrating them. The experimental result shows our method achieves a successful performance for both printed and handwritten letters as 95.9% and 84.7%, respectively.

  • PDF

Enhancement Techniques of Color Segmentation for Detecting Missing Persons in Smart Lighting System using Radar and Camera Sensors (레이다 및 카메라 내장형 스마트 조명에서 실종자 탐지용 색상 검출 향상 기법)

  • Song, Seungeon;Kim, Sangdong;Jin, Young-Seok;Lee, Jonghun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.3
    • /
    • pp.53-59
    • /
    • 2020
  • This paper proposes color segmentation for detecting missing persons in a smart lighting system using radar and camera sensors. Recently, smart lighting systems built-in radar and cameras have been efficient in saving energy and searching for missing persons, simultaneously. In smart lighting systems, radar detects moving objects and then the lights turn on and camera records. The video recorded is useful to find out missing persons. The color of their clothes worn in missing persons is one of critical hints to look for missing persons. Therefore, color segmentation is an effective means for detecting the color of their clothes. In this paper, during the color segmentation step, the ROI(Region of interest) setting based on the size of an object is applied and the background is reduced. According to experimental results, the color segmentation has good accuracy of more than 97%.

Ensemble-based deep learning for autonomous bridge component and damage segmentation leveraging Nested Reg-UNet

  • Abhishek Subedi;Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Mohammad R. Jahanshahi
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.335-349
    • /
    • 2023
  • Bridges constantly undergo deterioration and damage, the most common ones being concrete damage and exposed rebar. Periodic inspection of bridges to identify damages can aid in their quick remediation. Likewise, identifying components can provide context for damage assessment and help gauge a bridge's state of interaction with its surroundings. Current inspection techniques rely on manual site visits, which can be time-consuming and costly. More recently, robotic inspection assisted by autonomous data analytics based on Computer Vision (CV) and Artificial Intelligence (AI) has been viewed as a suitable alternative to manual inspection because of its efficiency and accuracy. To aid research in this avenue, this study performs a comparative assessment of different architectures, loss functions, and ensembling strategies for the autonomous segmentation of bridge components and damages. The experiments lead to several interesting discoveries. Nested Reg-UNet architecture is found to outperform five other state-of-the-art architectures in both damage and component segmentation tasks. The architecture is built by combining a Nested UNet style dense configuration with a pretrained RegNet encoder. In terms of the mean Intersection over Union (mIoU) metric, the Nested Reg-UNet architecture provides an improvement of 2.86% on the damage segmentation task and 1.66% on the component segmentation task compared to the state-of-the-art UNet architecture. Furthermore, it is demonstrated that incorporating the Lovasz-Softmax loss function to counter class imbalance can boost performance by 3.44% in the component segmentation task over the most employed alternative, weighted Cross Entropy (wCE). Finally, weighted softmax ensembling is found to be quite effective when used synchronously with the Nested Reg-UNet architecture by providing mIoU improvement of 0.74% in the component segmentation task and 1.14% in the damage segmentation task over a single-architecture baseline. Overall, the best mIoU of 92.50% for the component segmentation task and 84.19% for the damage segmentation task validate the feasibility of these techniques for autonomous bridge component and damage segmentation using RGB images.

A Study on the Performance of Enhanced Deep Fully Convolutional Neural Network Algorithm for Image Object Segmentation in Autonomous Driving Environment (자율주행 환경에서 이미지 객체 분할을 위한 강화된 DFCN 알고리즘 성능연구)

  • Kim, Yeonggwang;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.9-16
    • /
    • 2020
  • Recently, various studies are being conducted to integrate Image Segmentation into smart factory industries and autonomous driving fields. In particular, Image Segmentation systems using deep learning algorithms have been researched and developed enough to learn from large volumes of data with higher accuracy. In order to use image segmentation in the autonomous driving sector, sufficient amount of learning is needed with large amounts of data and the streaming environment that processes drivers' data in real time is important for the accuracy of safe operation through highways and child protection zones. Therefore, we proposed a novel DFCN algorithm that enhanced existing FCN algorithms that could be applied to various road environments, demonstrated that the performance of the DFCN algorithm improved 1.3% in terms of "loss" value compared to the previous FCN algorithms. Moreover, the proposed DFCN algorithm was applied to the existing U-Net algorithm to maintain the information of frequencies in the image to produce better results, resulting in a better performance than the classical FCN algorithm in the autonomous environment.

Development of 3D Crop Segmentation Model in Open-field Based on Supervised Machine Learning Algorithm (지도학습 알고리즘 기반 3D 노지 작물 구분 모델 개발)

  • Jeong, Young-Joon;Lee, Jong-Hyuk;Lee, Sang-Ik;Oh, Bu-Yeong;Ahmed, Fawzy;Seo, Byung-Hun;Kim, Dong-Su;Seo, Ye-Jin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.15-26
    • /
    • 2022
  • 3D open-field farm model developed from UAV (Unmanned Aerial Vehicle) data could make crop monitoring easier, also could be an important dataset for various fields like remote sensing or precision agriculture. It is essential to separate crops from the non-crop area because labeling in a manual way is extremely laborious and not appropriate for continuous monitoring. We, therefore, made a 3D open-field farm model based on UAV images and developed a crop segmentation model using a supervised machine learning algorithm. We compared performances from various models using different data features like color or geographic coordinates, and two supervised learning algorithms which are SVM (Support Vector Machine) and KNN (K-Nearest Neighbors). The best approach was trained with 2-dimensional data, ExGR (Excess of Green minus Excess of Red) and z coordinate value, using KNN algorithm, whose accuracy, precision, recall, F1 score was 97.85, 96.51, 88.54, 92.35% respectively. Also, we compared our model performance with similar previous work. Our approach showed slightly better accuracy, and it detected the actual crop better than the previous approach, while it also classified actual non-crop points (e.g. weeds) as crops.

Automatic Left Ventricle Segmentation using Split Energy Function including Orientation Term from CTA

  • Kang, Ho Chul
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2018
  • In this paper, we propose an automatic left ventricle segmentation method in computed tomography angiography (CTA) using separating energy function. First, we smooth the images by applying anisotropic diffusion filter to remove noise. Secondly, the volume of interest (VOI) is detected by using k-means clustering. Thirdly, we divide the left and right heart with split energy function. Finally, we extract only left ventricle from left and right heart with optimizing cost function including orientation term.

Attention-based deep learning framework for skin lesion segmentation (피부 병변 분할을 위한 어텐션 기반 딥러닝 프레임워크)

  • Afnan Ghafoor;Bumshik Lee
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.53-61
    • /
    • 2024
  • This paper presents a novel M-shaped encoder-decoder architecture for skin lesion segmentation, achieving better performance than existing approaches. The proposed architecture utilizes the left and right legs to enable multi-scale feature extraction and is further enhanced by integrating an attention module within the skip connection. The image is partitioned into four distinct patches, facilitating enhanced processing within the encoder-decoder framework. A pivotal aspect of the proposed method is to focus more on critical image features through an attention mechanism, leading to refined segmentation. Experimental results highlight the effectiveness of the proposed approach, demonstrating superior accuracy, precision, and Jaccard Index compared to existing methods