• Title/Summary/Keyword: Smart Plate

Search Result 301, Processing Time 0.032 seconds

Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.493-519
    • /
    • 2018
  • This article presents a finite element (FE) model to assess the free vibration and static response of a functionally graded skew magneto-electro-elastic (FGSMEE) plate. Through the thickness material grading of FGSMEE plate is achieved using power law distribution. The coupled constitutive equations along with the total potential energy approach are used to develop the FE model of FGSMEE plate. The transformation matrix is utilized in bringing out the element matrix corresponding to the global axis to a local axis along the skew edges to specify proper boundary conditions. The effect of skew angle on the natural frequency of an FGSMEE plate is analysed. Further, the study includes the evaluation of the static behavior of FGSMEE plate for various skew angles. The influence of skew angle on the primary quantities such as displacements, electric potential, and magnetic potential, and secondary quantities such as stresses, electric displacement and magnetic induction is studied in detail. In addition, the effect of power-law gradient, thickness ratio, boundary conditions and aspect ratio on the free vibration and static response characteristics of FGSMEE plate has been investigated.

Liquid boundary effect on free vibration of an annular plate coupled with a liquid

  • Kyeong-Hoon Jeong
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.127-149
    • /
    • 2023
  • A theoretical method is developed to analyze the free vibration of an elastic annular plate in contact with an ideal liquid. The displacement potential functions of the contained liquid are expressed as a combination of the Bessel functions that satisfy the Laplace equation and the liquid boundary conditions. The compatibility condition along the interface between the annular plate and the contained liquid is taken into account to consider the fluid-structure coupling. The dynamic displacement of the wet annular plate is assumed to be a combination of dry eigenfunctions, allowing for prediction of the natural frequencies using the Rayleigh-Ritz method. The study investigates the effect of radial liquid boundary conditions on the natural frequencies of the wet annular plate, considering four types of liquid bounding: outer container bounded, outer and inner bounded, inner bounded, and radially unbounded. The proposed theoretical method is validated by comparing the predicted wet natural frequencies with those obtained from finite element analysis, showing excellent accuracy. The results indicate that the radial liquid bounding effect on the natural frequencies is negligible for the axisymmetric vibrational mode, but relatively significant for the mode with one nodal diameter (n =1) and no nodal circle (m' = 0). Furthermore, the study reveals that the wet natural frequencies are the largest for the plate with an inner bounded cylinder among the radial liquid boundary cases, regardless of the vibration mode.

Higher order zig-zag plate theory for coupled thermo-electric-mechanical smart structures (열-기계-전기 하중 하에서의 지능 복합재 평판 고차이론)

  • Oh, Jin-Ho;Cho, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.9-14
    • /
    • 2002
  • A higher order zig-zag plate theory is developed to accurately predict fully coupled mechanical, thermal, and electric behaviors. Both the in-plane displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in tern-is of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux. The numerical examples of coupled and uncoupled analysis demonstrate the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings combined.

Reliability and Validity Study of Inertial Sensor-Based Application for Static Balance Measurement

  • Park, Young Jae;Jang, Ho Young;Kim, Kwon Hoi;Hwang, Dong Ki;Lee, Suk Min
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.3
    • /
    • pp.311-320
    • /
    • 2022
  • Objective: To investigate the reliability and validity of static balance measurements using an acceleration sensor and a gyroscope sensor in smart phone inertial sensors. Design: Equivalent control group pretest-posttest. Methods: Subjects were forty five healthy adults aged twenty to fifty-years-old who had no disease that could affect the experiment. After pre-test, all participants wore a waist band with smart phone, and conducted six static balance measurements on the force plate twice for 35 seconds each. To investigate the test-retest reliability of both smart phone inertial sensors, we compared the intra-correlation coefficient (ICC 3, 1) between primary and secondary measurements with the calculated root mean scale-total data. To determine the validity of the two sensors, it was measured simultaneously with force plate, and the comparision was done by Pearson's correlation. Results: The test-retest reliability showed excellent correlation for acceleration sensor, and it also showed excellent to good correlation for gyroscope sensor(p<0.05). The concurrent validity of smartphone inertial sensors showed a mostly poor to fair correlation for tandem-stance and one-leg-stance (p<0.05) and unacceptable correlation for the other postures (p>0.05). The gyroscope sensor showed a fair correlation for most of the RMS-Total data, and the other data also showed poor to fair correlation (p<0.05). Conclusions: The result indicates that both acceleration sensor and gyroscope sensor has good reliability, and that compared to force plate, acceleration sensor has unacceptable or poor correlation, and gyroscope sensor has mostly fair correlation.

Study on Continuously Variable System Using to Centrifugal Belt Pulley

  • Do, Hyung-jin;Youm, Kwang-Wook
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2020
  • In the case of a belt-pulley type CVT that transmits a driving force by using a variable pulley and a metal belt, slippage occurs due to transmission of power by using a belt, which results in a decrease in efficiency. Therefore, in this study, the rails were machined on the plate surface of the pulley to reduce the friction and slip between the belt and the pulley while applying the characteristics of the CVT. As the plate is rotated by the shape of the rail, a centrifugal belt pulley type continuously variable transmission system which shifts while varying the radius of rotation of the belt that transmits power is studied. Accordingly, the structure of the pulley was designed and the centrifugal belt pulley type continuously variable transmission was Manufactured. In addition, to verify the suitability of the manufactured transmission, the power transmission efficiency was monitored by establishing an interface with the controller. The structural analysis of the plate proved the suitability of the centrifugal belt pulley type continuously variable transmission.

The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers

  • Arefi, M.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1345-1362
    • /
    • 2015
  • The present paper deals with the free vibration analysis of the functionally graded solid and annular circular plates with two functionally graded piezoelectric layers at top and bottom subjected to an electric field. Classical plate theory (CPT) is used for description of the all deformation components based on a symmetric distribution. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness direction of the plate. The properties of plate core can vary from metal at bottom to ceramic at top. The effect of non homogeneous index of functionally graded and functionally graded piezoelectric sections can be considered on the results of the system. $1^{st}$ and $2^{nd}$ modes of natural frequencies of the system have been evaluated for both solid and annular circular plates, individually.

The Analysis of Smart Plate Using Enhanced First Shear Deformation Theory (개선된 일차전단변형이론을 이용한 지능구조평판의 거동해석)

  • Oh, Jin-Ho;Kim, Heung-Su;Rhee, Seung-Yun;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.663-668
    • /
    • 2007
  • An enhanced first shear deformation theory for composite plate is developed. The detailed process is as follows. Firstly, the theory is formulated by modifying higher order zigzag theory. That is, the higher order theory is separated into the warping function representing the higher order terms and lower order terms. Secondly, the relationships between higher order zig-zag field and averaged first shear deformation field based on the Reissner-Mindlin's plate theory are derived. Lastly, the effective shear modulus is calculated by minimizing error between higher order energy and first order energy. Then the governing equation of FSDT is solved by substituting shear modulus into effective shear modulus. The recovery processing with the nodal unknown obtained from governing equation is performed. The accuracy of the present proposed theory is demonstrated through numerical examples. The proposed method will serve as a powerful tool in the prediction of laminated composite plate.

  • PDF

Identification of multiple sources in a plate structure using pre-filtering process for reduction of interference wave

  • Lee, S.K.;Moon, Y.S.;Park, J.H.
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.219-237
    • /
    • 2011
  • This paper presents novel research into the source localization of multiple impacts. Source localization technology for single impact loads in a plate structure has been used for health monitoring. Most of research on source localization has been focused only on the localization of single impacts. Overlapping of dispersive waves induced by multiple impacts and reflection of those waves from the edge of the plate make it difficult to localize the sources of multiple impacts using traditional source localization technology. The method solving the overlapping problem and the reflection problem is presented in the paper. The suggested method is based on pre-signal processing technology using band pass filter and optimal filter. Results from numerical simulation and from experimentation are presented, and these verify the capability of the proposed method.

Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation

  • Arefi, Mohammad;Allam, M.N.M.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.81-100
    • /
    • 2015
  • This paper presents nonlinear analysis of an arbitrary functionally graded circular plate integrated with two functionally graded piezoelectric layers resting on the Winkler-Pasternak foundation. Geometric nonlinearity is considered in the strain-displacement relation based on the Von-Karman assumption. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness of the plate based on a power function. Electric potential is assumed as a quadratic function along the thickness direction. After derivation of general nonlinear equations, as an instance, numerical results of a functionally graded material integrated with functionally graded piezoelectric material obeying two different functionalities is investigated. The effect of different parameters such as parameters of foundation, non homogenous index and boundary conditions can be investigated on the mechanical and electrical results of the system. A comprehensive comparison between linear and nonlinear responses of the system presents necessity of this study. Furthermore, the obtained results can be validated by using previous linear and nonlinear analyses after removing the effect of foundation.

Thermal buckling of porous FGM plate integrated surface-bonded piezoelectric

  • Mokhtar Ellali;Khaled Amara;Mokhtar Bouazza
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.171-186
    • /
    • 2024
  • In the present paper, thermal buckling characteristics of functionally graded rectangular plates made of porous material that are integrated with surface-bonded piezoelectric actuators subjected to the combined action of thermal load and constant applied actuator voltage are investigated by utilizing a Navier solution method. The uniform temperature rise loading is considered. Thermomechanical material properties of FGM plates are assumed to be temperature independent and supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM) which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. The governing differential equations of stability for the piezoelectric FGM plate are derived based on higher order shear deformation plate theory. Influences of several important parameters on the critical thermal buckling temperature are investigated and discussed in detail.