• Title/Summary/Keyword: Smart Multi-sensor

Search Result 197, Processing Time 0.023 seconds

Flexible smart sensor framework for autonomous structural health monitoring

  • Rice, Jennifer A.;Mechitov, Kirill;Sim, Sung-Han;Nagayama, Tomonori;Jang, Shinae;Kim, Robin;Spencer, Billie F. Jr.;Agha, Gul;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.423-438
    • /
    • 2010
  • Wireless smart sensors enable new approaches to improve structural health monitoring (SHM) practices through the use of distributed data processing. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While much of the technology associated with smart sensors has been available for nearly a decade, there have been limited numbers of fulls-cale implementations due to the lack of critical hardware and software elements. This research develops a flexible wireless smart sensor framework for full-scale, autonomous SHM that integrates the necessary software and hardware while addressing key implementation requirements. The Imote2 smart sensor platform is employed, providing the computation and communication resources that support demanding sensor network applications such as SHM of civil infrastructure. A multi-metric Imote2 sensor board with onboard signal processing specifically designed for SHM applications has been designed and validated. The framework software is based on a service-oriented architecture that is modular, reusable and extensible, thus allowing engineers to more readily realize the potential of smart sensor technology. Flexible network management software combines a sleep/wake cycle for enhanced power efficiency with threshold detection for triggering network wide operations such as synchronized sensing or decentralized modal analysis. The framework developed in this research has been validated on a full-scale a cable-stayed bridge in South Korea.

Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Ho, Duc-Duy
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.393-416
    • /
    • 2011
  • Hybrid acceleration-impedance sensor nodes on Imote2-platform are designed for damage monitoring in steel girder connections. Thus, the feasibility of the sensor nodes is examined about its performance for vibration-based global monitoring and impedance-based local monitoring in the structural systems. To achieve the objective, the following approaches are implemented. First, a damage monitoring scheme is described in parallel with global vibration-based methods and local impedance-based methods. Second, multi-scale sensor nodes that enable combined acceleration-impedance monitoring are described on the design of hardware components and embedded software to operate. Third, the performances of the multi-scale sensor nodes are experimentally evaluated from damage monitoring in a lab-scaled steel girder with bolted connection joints.

Development of Novel Impact Paint Sensor by Using Graphene based Smart Nano Composite (그래핀 기반 지능형 나노복합소재를 이용한 고감도 임팩트 페인트 센서 개발 연구)

  • Kim, Sung Yong;Park, Sehoon;Choi, Gyoung Rak;Park, Hyung-Ki;Kang, Inpil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.247-252
    • /
    • 2014
  • This paper presents a novel impact sensor which can be fabricated with smart paint made of grapheme. This smart nano paint can be easily installed on structures using a spray-on technique and that can make the sensor low cost and practical. The graphene effectively improves the piezoresistivity of the smart paint and that is available to achieve sensitive impact sensor with high gauge factor. The nano smart-paint can detect sufficient impact to cover the damaged energy range of the composite around 1~3J. The voltage outputs from the sprayed paints show fairly linear responses after signal processing. The impact makes deformation of the structure and it brings change of piezoresistivity of the paint and those converts into voltage output consequently by means of a simple signal processing system. The nano smart paint is lightweight and easily applied to the structural surface, and there is no stress concentration. The nano smart paint is expected to be a cost effective and sensitive multi-functional sensor for composites and other damage monitoring applications in the field of structural health monitoring.

Multi-type, multi-sensor placement optimization for structural health monitoring of long span bridges

  • Soman, Rohan N.;Onoufrioua, Toula;Kyriakidesb, Marios A.;Votsisc, Renos A.;Chrysostomou, Christis Z.
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2014
  • The paper presents a multi-objective optimization strategy for a multi-type sensor placement for Structural Health Monitoring (SHM) of long span bridges. The problem is formulated for simultaneous placement of strain sensors and accelerometers (heterogeneous network) based on application demands for SHM system. Modal Identification (MI) and Accurate Mode Shape Expansion (AMSE) were chosen as the application demands for SHM. The optimization problem is solved through the use of integer Genetic Algorithm (GA) to maximize a common metric to ensure adequate MI and AMSE. The performance of the joint optimization problem solved by GA is compared with other established methods for homogenous sensor placement. The results indicate that the use of a multi-type sensor system can improve the quality of SHM. It has also been demonstrated that use of GA improves the overall quality of the sensor placement compared to other methods for optimization of sensor placement.

A Study of Recognition-Based user Multi-Smart Plug System (사용자 인식 기반 멀티-스마트 플러그에 관한 연구)

  • Oh, Jin-Seok;Lee, Hunseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2976-2983
    • /
    • 2013
  • Interest in reducing standby power is increasing because of electric power shortages. Most of electric equipment are in standby state that does not use a function of the original, most electronic devices consume a lot of electric power even in standby mode. In many countries, research on the smart plug is advanced in order to prevent power consumption due to standby state. However, due to the nature of the function, expensive in many case. These smart plugs would be to cut the standby power using motion detecting sensor or pattern control of the user. Theses features have no advantages because of malfunction of motion detecting sensor and in accordance with the diversification ot user's pattern. In this study, developing a multi-smart plug system that linked with bluetooth function of user's smart phone. Using smart phone bluetooth function, determination of the position of the user. The suggestion smart plug cutting the standby power of the electronic apparatus. It was confirmed that it is able to reduce the power consumption according to the location of the user.

A scheme on multi-tier heterogeneous networks for citywide damage monitoring in an earthquake

  • Fujiwara, Takahiro;Watanabe, Takashi;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.497-510
    • /
    • 2013
  • Quick, accurate damage monitoring is strongly required for damage assessment in the aftermath of a large natural disaster. Wireless sensor networks are promising technologies to acquire damage information in a citywide area. The wireless sensor networks, however, would be faced with difficulty to collect data in real-time and to expand the scalability of the networks. This paper discusses a scheme of network architecture to cove a whole city in multi-tier heterogeneous networks, which consist of wireless sensor networks, access networks and a backbone network. We first review previous studies for citywide damage monitoring, and then discuss the feature of multi-tier heterogeneous networks to cover a citywide area.

Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses

  • Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.

Multiple Color and ToF Camera System for 3D Contents Generation

  • Ho, Yo-Sung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.175-182
    • /
    • 2017
  • In this paper, we present a multi-depth generation method using a time-of-flight (ToF) fusion camera system. Multi-view color cameras in the parallel type and ToF depth sensors are used for 3D scene capturing. Although each ToF depth sensor can measure the depth information of the scene in real-time, it has several problems to overcome. Therefore, after we capture low-resolution depth images by ToF depth sensors, we perform a post-processing to solve the problems. Then, the depth information of the depth sensor is warped to color image positions and used as initial disparity values. In addition, the warped depth data is used to generate a depth-discontinuity map for efficient stereo matching. By applying the stereo matching using belief propagation with the depth-discontinuity map and the initial disparity information, we have obtained more accurate and stable multi-view disparity maps in reduced time.

Efficient Mobile Sink Location Management Scheme Using Multi-Ring in Solar-Powered Wireless Sensor Networks

  • Kim, Hyeok;Kang, Minjae;Yoon, Ikjune;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.55-62
    • /
    • 2017
  • In this paper, we proposes a multi-ring based mobile sink location scheme for solar-powered wireless sensor network (WSN). The proposed scheme maintains the multi-rings in which nodes keep the current location of sink node. With the help of nodes in multi-rings, each node can locate the sink node efficiently with low-overhead. Moreover, because our scheme utilizes only surplus energy of a node, it can maintain multiple rings without degrading any performance of each node. Experimental results show that the proposed scheme shows much better latency and scalability with lower energy-consumption than the existing single-ring based scheme.

A Study on Orientation and Position Control of Mobile Robot Based on Multi-Sensors Fusion for Implimentation of Smart FA (스마트팩토리 실현을 위한 다중센서기반 모바일로봇의 위치 및 자세제어에 관한 연구)

  • Dong, G.H;Kim, D.B.;Kim, H.J;Kim, S.H;Baek, Y.T;Han, S.H
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.209-218
    • /
    • 2019
  • This study proposes a new approach to Control the Orientation and position based on obstacle avoidance technology by multi sensors fusion and autonomous travelling control of mobile robot system for implimentation of Smart FA. The important focus is to control mobile robot based on by the multiple sensor module for autonomous travelling and obstacle avoidance of proposed mobile robot system, and the multiple sensor module is consit with sonar sensors, psd sensors, color recognition sensors, and position recognition sensors. Especially, it is proposed two points for the real time implementation of autonomous travelling control of mobile robot in limited manufacturing environments. One is on the development of the travelling trajectory control algorithm which obtain accurate and fast in considering any constraints. such as uncertain nonlinear dynamic effects. The other is on the real time implementation of obstacle avoidance and autonomous travelling control of mobile robot based on multiple sensors. The reliability of this study has been illustrated by the computer simulation and experiments for autonomous travelling control and obstacle avoidance.