• Title/Summary/Keyword: Smart Multi-sensor

Search Result 197, Processing Time 0.024 seconds

Immersive Smart Balance Board with Multiple Feedback (다중 피드백을 지원하는 몰입형 스마트 밸런스 보드)

  • Seung-Yong Lee;Seonho Lee;Junesung Park;Min-Chul Shin;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.171-178
    • /
    • 2024
  • Exercises using a Balance Board (BB) are effective in developing balance, strengthening core muscles, and improving physical fitness and concentration. In particular, the Smart Balance Board (SBB), which integrates with various digital content, provides appropriate feedback compared to traditional balance boards, maximizing the effectiveness of the exercise. However, most systems only offer visual and auditory feedback, failing to evaluate the impact on user engagement, interest, and the accuracy of exercise postures. This study proposes an Immersive Smart Balance Board (I-SBB) that utilizes multiple sensors to enable training with various feedback mechanisms and precise postures. The proposed system, based on Arduino, consists of a gyro sensor for measuring the board's posture, a communication module for wired/wireless communication, an infrared sensor to guide the user's foot placement, and a vibration motor for tactile feedback. The board's posture measurements are smoothly corrected using a Kalman Filter, and the multi-sensor data is processed in real-time using FreeRTOS. The proposed I-SBB is shown to be effective in enhancing user concentration and engagement, as well as generating interest, by integrating with diverse content.

Wireless operational modal analysis of a multi-span prestressed concrete bridge for structural identification

  • Whelan, Matthew J.;Gangone, Michael V.;Janoyan, Kerop D.;Hoult, Neil A.;Middleton, Campbell R.;Soga, Kenichi
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.579-593
    • /
    • 2010
  • Low-power radio frequency (RF) chip transceiver technology and the associated structural health monitoring platforms have matured recently to enable high-rate, lossless transmission of measurement data across large-scale sensor networks. The intrinsic value of these advanced capabilities is the allowance for high-quality, rapid operational modal analysis of in-service structures using distributed accelerometers to experimentally characterize the dynamic response. From the analysis afforded through these dynamic data sets, structural identification techniques can then be utilized to develop a well calibrated finite element (FE) model of the structure for baseline development, extended analytical structural evaluation, and load response assessment. This paper presents a case study in which operational modal analysis is performed on a three-span prestressed reinforced concrete bridge using a wireless sensor network. The low-power wireless platform deployed supported a high-rate, lossless transmission protocol enabling real-time remote acquisition of the vibration response as recorded by twenty-nine accelerometers at a 256 Sps sampling rate. Several instrumentation layouts were utilized to assess the global multi-span response using a stationary sensor array as well as the spatially refined response of a single span using roving sensors and reference-based techniques. Subsequent structural identification using FE modeling and iterative updating through comparison with the experimental analysis is then documented to demonstrate the inherent value in dynamic response measurement across structural systems using high-rate wireless sensor networks.

A Study on Implementation for Real-time Lane Departure Warning System & Smart Night Vision Based on HDR Camera Platform (실시간 차선 이탈 경고 및 Smart Night Vision을 위한 HDR Camera Platform 구현에 관한 연구)

  • Park, Hwa-Beom;Park, Ge-O;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.123-126
    • /
    • 2017
  • The information and communication technology that is being developed recently has been greatly influencing the automobile market. In recent years, devices equipped with IT technology have been installed for the safety and convenience of the driver. However, it has the advantage of increased convenience as well as the disadvantage of increasing traffic accidents due to driver 's distraction. In order to prevent such accidents, it is necessary to develop safety systems of various types and ways. In this paper, we propose a method to implement a multi-function camera driving safety system that notifies a pedestrian and lane departure warning without using a radar sensor or a stereo video image, and a study on the analysis of a lane departure alarm software result.

  • PDF

Development of Auto-tuning Temperature Controller with Multi-channel (다중채널을 갖는 오토튜닝 온도 제어기 개발)

  • Lee, Kap Rai
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.419-427
    • /
    • 2018
  • This paper designs and develops auto-tuning temperature controller with multi-channel, which controller with multi-channel could control a number of control system simultaneously. This controller has multi-channel input and output. And a number of control algorithms run in this controller simultaneously and independently. Firstly we present design method of controller with multi-channel. Secondly we design electrical circuit of sensor input, controller output and power control for temperature control board. And finally we design data protocol for serial communication to monitor control state and present verification of temperature controller with muiti-channel through field experiment.

A Study on the Establishment of Urban Life Safety Abnormalities Detection Service Using Multi-Type Complex Sensor Information (다종 복합센서 정보를 활용한 도심 생활안전 이상감지 서비스 구축방안 연구)

  • Woochul Choi;Bong-Joo Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.315-328
    • /
    • 2024
  • Purpose: The purpose of this paper is to present a service construction plan using multiple complex sensor information to detect abnormal situations in urban life safety that are difficult to identify on CCTV. Method: This study selected service scenarios based on actual testbed data and analyzed service importance for local government control center operators, which are main users. Result: Service scenarios were selected as detection of day and night dynamic object, Detection of sudden temperature changes, and Detection of time-series temperature changes. As a result of AHP analysis, walking and mobility collision risk situation services and fire foreshadowing detection services leading to immediate major disasters were highly evaluated. Conclusion: This study is significant in proposing a plan to build an anomaly detection service that can be used in local governments based on real data. This study is significant in proposing a plan to build an anomaly detection service that can be used by local governments based on testbed data.

Application and evaluation for effluent water quality prediction using artificial intelligence model (방류수질 예측을 위한 AI 모델 적용 및 평가)

  • Mincheol Kim;Youngho Park;Kwangtae You;Jongrack Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • Occurrence of process environment changes, such as influent load variances and process condition changes, can reduce treatment efficiency, increasing effluent water quality. In order to prevent exceeding effluent standards, it is necessary to manage effluent water quality based on process operation data including influent and process condition before exceeding occur. Accordingly, the development of the effluent water quality prediction system and the application of technology to wastewater treatment processes are getting attention. Therefore, in this study, through the multi-channel measuring instruments in the bio-reactor and smart multi-item water quality sensors (location in bio-reactor influent/effluent) were installed in The Seonam water recycling center #2 treatment plant series 3, it was collected water quality data centering around COD, T-N. Using the collected data, the artificial intelligence-based effluent quality prediction model was developed, and relative errors were compared with effluent TMS measurement data. Through relative error comparison, the applicability of the artificial intelligence-based effluent water quality prediction model in wastewater treatment process was reviewed.

An Efficient Addressing Scheme Using (x, y) Coordinates in Environments of Smart Grid (스마트 그리드 환경에서 (x, y) 좌표값을 이용한 효율적인 주소 할당 방법)

  • Cho, Yang-Hyun;Lim, Song-Bin;Kim, Gyung-Mok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2012
  • Smart Grid is the next-generation intelligent power grid that maximizes energy efficiency with the convergence of IT technologies and the existing power grid. Smart Grid is created solution for standardization and interoperability. Smart Grid industry enables consumers to check power rates in real time for active power consumption. It also enables suppliers to measure their expected power generation load, which stabilizes the operation of the power system. Smart industy was ecolved actively cause Wireless communication is being considered for AMI system and wireless communication using ZigBee sensor has been applied in various industly. In this paper, we proposed efficient addressing scheme for improving the performance of the routing algorithm using ZigBee in Smart Grid environment. A distributed address allocation scheme used an existing algorithm has wasted address space. Therefore proposing x, y coordinate axes from divide address space of 16 bit to solve this problem. Each node was reduced not only bitwise but also multi hop using the coordinate axes while routing than Cskip algorithm. I compared the performance between the standard and the proposed mechanism through the numerical analysis. Simulation verify performance about decrease averaging multi hop count that compare proposing algorithm and another. The numerical analysis results show that proposed algorithm reduce multi hop than ZigBee distributed address assignment and another.

The Detection Characterization of NOX Gas Using the MWCNT/ZnO Composite Film Gas Sensors by Heat Treatment (열처리에 따른 MWCNT/ZnO 복합체 필름 가스센서의 NOX 가스 검출 특성)

  • Kim, Hyun-Soo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.521-526
    • /
    • 2018
  • In particular, gas sensors require characteristics such as high speed, sensitivity, and selectivity. In this study, we fabricated a $NO_X$ gas sensor by using a multi-walled carbon nanotube (MWCNT)/zinc oxide (ZnO) composite film. The fabricated MWCNT/ZnO gas sensor was then treated by a $450^{\circ}C$ temperature process to increase its detection sensitivity for NOx gas. We compared the detection characteristics of a ZnO film gas sensor, MWCNT film gas sensor, and the MWCNT/ZnO composited film gas sensor with and without the heat-treatment process. The fabricated gas sensors were used to detect $NO_X$ gas at different concentrations. The gas sensor absorbed $NO_X$ gas molecules, exhibiting increased sensitivity. The sensitivity of the gas sensor was increased by increasing the gas concentration. Additionally, while changing the temperature inside the chamber for the MWCNT/ZnO composite film gas sensor, we obtained its sensitivity for detecting $NO_X$ gas. Compared with ZnO, the MWCNT film gas sensor is excellent for detecting $NO_X$ gas. From the experimental results, we confirmed the enhanced gas sensor sensing mechanism. The increased effect by electronic interaction between the MWCNT and ZnO films contributes to the improved sensor performance.

Design and Implementation of Human and Object Classification System Using FMCW Radar Sensor (FMCW 레이다 센서 기반 사람과 사물 분류 시스템 설계 및 구현)

  • Sim, Yunsung;Song, Seungjun;Jang, Seonyoung;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.364-372
    • /
    • 2022
  • This paper proposes the design and implementation results for human and object classification systems utilizing frequency modulated continuous wave (FMCW) radar sensor. Such a system requires the process of radar sensor signal processing for multi-target detection and the process of deep learning for the classification of human and object. Since deep learning requires such a great amount of computation and data processing, the lightweight process is utmost essential. Therefore, binary neural network (BNN) structure was adopted, operating convolution neural network (CNN) computation in a binary condition. In addition, for the real-time operation, a hardware accelerator was implemented and verified via FPGA platform. Based on performance evaluation and verified results, it is confirmed that the accuracy for multi-target classification of 90.5%, reduced memory usage by 96.87% compared to CNN and the run time of 5ms are achieved.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.