• Title/Summary/Keyword: Smart Monitor Target

Search Result 10, Processing Time 0.023 seconds

Development and Research of SMT(Smart Monitor Target) Game Interface for Airsoft Gun Users (AirSoft Gun 사용자를 위한 SMT(Smart Monitor Target)게임 인터페이스 개발 연구)

  • Chung, Ju Youn;Kang, Yun Geuk
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.1
    • /
    • pp.83-93
    • /
    • 2021
  • The purpose of this study was to develop a personalized SMT (smart monitor target) game interface for game users who enjoy airsoft sports as individual purchases of SMT have increased since the advent of the untouched era. For this study, the UX (user experience) of the game interface was designed based on previous research. In particular, the personalized game service was reinforced by adding the CP (command post) of the SMT system that performs the home function of the console game, which was intended to help the user maintain immersed in the game in the personalized space of the SMT. Major design elements for the SMT game interface included layout, color, graphics, buttons, and text, and the interface design was proceeded based on them. After composing a grid with a layout in which the tab function was applied to the interface with a vertical three-segment structure and the outer margin value secured, the military camouflage pattern and texture were applied to the colored tone to perform graphics work. Targets and thumbnails were produced as illustrations using experts to ensure the consistency of the interface, and then function buttons and texts on each page were used concisely for intuitive information delivery. The design sources organized in this way were developed using the Unity engine. In the future, we hope that game user-centered personalized interfaces will continue to develop and provide differentiated services unique to SMT systems in the airsoft gun market.

Targetless displacement measurement of RSW based on monocular vision and feature matching

  • Yong-Soo Ha;Minh-Vuong Pham;Jeongki Lee;Dae-Ho Yun;Yun-Tae Kim
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.207-218
    • /
    • 2023
  • Real-time monitoring of the behavior of reinforced soil retaining wall (RSW) is required for safety checks. In this study, a targetless displacement measurement technology (TDMT) consisting of an image registration module and a displacement calculation module was proposed to monitor the behavior of RSW, in which facing displacement and settlement typically occur. Laboratory and field experiments were conducted to compare the measuring performance of natural target (NT) with the performance of artificial target (AT). Feature count- and location-based performance metrics and displacement calculation performance were analyzed to determine their correlations. The results of laboratory and field experiments showed that the feature location-based performance metric was more relevant to the displacement calculation performance than the feature count-based performance metric. The mean relative errors of the TDMT were less than 1.69 % and 5.50 % for the laboratory and field experiments, respectively. The proposed TDMT can accurately monitor the behavior of RSW for real-time safety checks.

Robot Driving System and Sensors Implementation for a Mobile Robot Capable of Tracking a Moving Target (이동물체 추적 가능한 이동형 로봇구동 시스템 설계 및 센서 구현)

  • Myeong, Ho Jun;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.607-614
    • /
    • 2013
  • This paper proposes a robot driving system and sensor implementation for use with an education robot. This robot has multiple functions and was designed so that children could use it with interest and ease. The robot recognizes the location of a user and follows that user at a specific distance when the robot and user communicate with each other. In this work, the robot was designed and manufactured to evaluate its performance. In addition, an embedded board was installed with the purpose of communicating with a smart phone, and a camera mounted on the robot allowed it to monitor the environment. To allow the robot to follow a moving user, a set of sensors combined with an RF module and ultrasonic sensors were adopted to measure the distance between the user and the robot. With the help of this ultrasonic sensors arrangement, the location of the user couldbe identified in all directions, which allowed the robot to follow the moving user at the desired distance. Experiments were carried out to see how well the user's location could be recognized and to investigate how accurately the robot trackedthe user, which eventually yielded a satisfactory performance.

On site monitoring during nearby drilling operations toward a geothermal power system installation

  • Bortoluzzi, Daniele;Casciati, Sara;Faravelli, Lucia;Francolini, Matteo
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.317-325
    • /
    • 2022
  • Among the approaches to the production of "green" energy, geothermal power systems are becoming quite popular in Europe. Their installation in existing buildings requires an extended, external pipes appendix and its laying operation needs a drilling activities nearby structural skeletons often designed to support static loads only, especially when ancient buildings are targeted. This contribution reports and discusses the experimental results achieved within a specific case study within the European project GEOFIT. In particular, standard accelerometric measurements in and nearby a single-story reinforced concrete building are collected and analysed in the absence of drilling (pre-drilling) and during drilling activities (drilling phase) to monitor the structure response to the external source of vibrations related to the excavations phase. The target is to outline automatic guidelines toward installations preventing from any sort of structural damage.

Acceleration-based neural networks algorithm for damage detection in structures

  • Kim, Jeong-Tae;Park, Jae-Hyung;Koo, Ki-Young;Lee, Jong-Jae
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.583-603
    • /
    • 2008
  • In this study, a real-time damage detection method using output-only acceleration signals and artificial neural networks (ANN) is developed to monitor the occurrence of damage and the location of damage in structures. A theoretical approach of an ANN algorithm that uses acceleration signals to detect changes in structural parameters in real-time is newly designed. Cross-covariance functions of two acceleration responses measured before and after damage at two different sensor locations are selected as the features representing the structural conditions. By means of the acceleration features, multiple neural networks are trained for a series of potential loading patterns and damage scenarios of the target structure for which its actual loading history and structural conditions are unknown. The feasibility of the proposed method is evaluated using a numerical beam model under the effect of model uncertainty due to the variability of impulse excitation patterns used for training neural networks. The practicality of the method is also evaluated from laboratory-model tests on free-free beams for which acceleration responses were measured for several damage cases.

Person Re-identification using Sparse Representation with a Saliency-weighted Dictionary

  • Kim, Miri;Jang, Jinbeum;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.262-268
    • /
    • 2017
  • Intelligent video surveillance systems have been developed to monitor global areas and find specific target objects using a large-scale database. However, person re-identification presents some challenges, such as pose change and occlusions. To solve the problems, this paper presents an improved person re-identification method using sparse representation and saliency-based dictionary construction. The proposed method consists of three parts: i) feature description based on salient colors and textures for dictionary elements, ii) orthogonal atom selection using cosine similarity to deal with pose and viewpoint change, and iii) measurement of reconstruction error to rank the gallery corresponding a probe object. The proposed method provides good performance, since robust descriptors used as a dictionary atom are generated by weighting some salient features, and dictionary atoms are selected by reducing excessive redundancy causing low accuracy. Therefore, the proposed method can be applied in a large scale-database surveillance system to search for a specific object.

Sensor Data Collecting and Processing System (센서 데이터 수집 및 처리 시스템)

  • Ko, Dong-beom;Kim, Tae-young;Kim, Jeong-Joon;Park, Jeong-min
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.9
    • /
    • pp.259-269
    • /
    • 2017
  • As emerging the '4th Industrial Revolution' by increasing the necessity of the intelligent system recently, 'Autonomic Control System' also has been the important issue. It is necessary to develop the system collecting data of machines and sensors for the autonomic control system to monitor the target system. But it is difficult to collect data because data formats of machines and sensors of the existing factories differ between each manufacturer. Therefore, this paper presents and implements data collecting and processing system that comprise 3 steps including 'ParseBuffer', 'ProcessData' and 'AddToBuffer' by using 'MTConnect' that is standard manufacturing facility data collecting middleware. Through the suggested system, we can get data in a common format usable in an autonomous control system. As a case study, we experimented with the generation and collection of AGV (Automated Guided Vehicle) data, which is an unattended transportation system in the factory. To accomplish this, we defined the data type in accordance with the MTConnect standard and confirmed the data collected through the proposed system.

Absorbed Dose Measurement by the MIRD System in the $^{131}I$ Treated Thyroid Cancer Patients (갑상선 암 환자에서 $^{131}I$ 치료시 MIRD Schema에 의한 흡수선량의 평가)

  • Lim, Sang-Moo;Woo, Kwang-Sun;Chung, Wee-Sup;Hong, Sang-Woon;Kim, Jang-Hee;Kim, Ki-Sup
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.1
    • /
    • pp.54-60
    • /
    • 1995
  • Medical Internal Radiation Dose(MIRD) schema was developed for calculating the absorbed dose from the administered radiopharmaceuticals. With the biological distribution data and the physical properties of the radionuclide we can estimate the absorbed dose by the MIRD schema. For the thyroid cancer patients received $^{131}I$ therapy, the absorbed dose to the bone marrow is the limiting factor to the administered dose, and the duration of admission is deter-mined by the retained activity in the whole body. To monitor the whole body radioactivity, we used Eberline Smart 200 system using ionization chamber as a detector. With the time activity curve of the whole body, total body residence time was obtained. From the ICRP publication 53, the residence times of the source organs, such as kidney, urinary bladder content and stomach, were used to calculate the absorbed doses of the target organs, such as stomach, red marrow, bladder wall and remaineder total body. In 8 thyroid cancer patients with 175 mci of $^{131}I$ administered orally, the mean absorbed dose in the bladder wall was 375.1, in the stomach 285.1, red marrow 25.4 and total body 22.4 rad respectively. For the monitoring of the large administered activity, this method seemed to be quite useful.

  • PDF

Real Estate Asset NFT Tokenization and FT Asset Portfolio Management (부동산 유동화 NFT와 FT 분할 거래 시스템 설계 및 구현)

  • Young-Gun Kim;Seong-Whan Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.419-430
    • /
    • 2023
  • Currently, NFTs have no dominant application except for the proof of ownership for digital content, and it also have small liquidity problem, which makes their price difficult to predict. Real estate usually has very high barriers to investment due to its high pricing. Real estate can be converted into NFTs and also divided into small value fungible tokens (FTs), and it can increase the the volume of the investor community due to more liquidity and better accessibility. In this document, we implement and design a system that allows ordinary users can invest on high priced real estate utilizing Black Litterman (BL) model-based Portfolio investment interface. To this end, we target a set of real estates pegged as collateral and issue NFT for the collateral using blockchain. We use oracle to get the current real estate information and to monitor varying real estate prices. After tokenizing real estate into NFTs, we divide the NFTs into easily accessible price FTs, thereby, we can lower prices and provide large liquidity with price volatility limited. In addition, we also implemented BL based asset portfolio interface for effective portfolio composition for investing in multiple of real estates with small investments. Using BL model, investors can fix the asset portfolio. We implemented the whole system using Solidity smart contracts on Flask web framework with public data portals as oracle interfaces.

An Exploratory Study on Smart Wearable and Game Service Design for U-Silver Generation: U-Hospital Solution for the Induction of Interest to Carry Out Personalized Exercise Prescription (U-실버세대를 위한 스마트 웨어러블 및 연동 게임의 서비스 디자인 방안 탐색: 개인 맞춤형 운동처방 실행을 위한 흥미 유도 목적의 U-Hospital 솔루션)

  • Park, Su Youn;Lee, Joo Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • The U-Healthcare era has evolved with the development of the Internet of things (IoT) in the early stages of being connected as a society. Already, many changes such as increased well-being and the extension of human life are becoming evident across cultures. Korea entered the growing group of aging societies in 2017, and its silver industry is expected to grow rapidly by adopting the IoT of a super-connected society. In particular, the senior shift phenomenon has resulted in increased interest in the promotion of the health and well-being of the emergent silver generation which, unlike the existing silver generation, is highly active and wields great economic power. This study conducted in-depth interviews to investigate the characteristics of the new silver generation, and to develop the design for a wearable serious game that intends to boost the interest of the elderly in exercise and fitness activities according to their personalized physical training regimes as prescribed by the U-Hospital service. The usage scenario of this wearable serious game for the 'U-silver generation' is derived from social necessity. Medical professionals can utilize this technology to conduct health examinations and to monitor the rehabilitation of senior patients. The elderly can also use this tool to request checkups or to interface with their healthcare providers. The wearable serious game is further aimed at mitigating concerns about the deterioration of the physical functions of the silver generation by applying personalized exercise prescriptions. The present investigation revealed that it is necessary to merge the on / off line community activities to meet the silver generation's daily needs for connection and friendship. Further, the sustainability of the serious game must be enhanced through the inculcation of a sense of accomplishment as a player rises through the levels of the game. The proposed wearable serious game is designed specifically for the silver generation that is inexperienced in using digital devices: simple game rules are applied to a familiar interface grounded on the gourmet travels preferred by the target players to increase usability.