• Title/Summary/Keyword: Smart Meter

Search Result 162, Processing Time 0.029 seconds

Evaluation of Field Applicability for All-In-One Smart Water Meter to Measure both Water Quantity and Quality in Office Building Water Usage (사무실 사용용수의 수량/수질 동시 측정이 가능한 일체형 스마트 워터 미터의 현장 적용성 평가)

  • Lee, Saeromi;Oh, Hyun Je;Joo, Jin Chul;Ahn, Chang Hyuk;Park, Jae Roh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.653-662
    • /
    • 2016
  • Recently, advanced metering infrastructure (AMI) has been recognized as a core technology of smart water grid, and the relevant market is growing constantly. In this study, we developed all-in-one smart water meter of the AMI system, which was installed on the test-bed to verify both effectiveness and field applicability in office building water usage. Developed 15 mm-diameter smart water meter is a magneto-resistive digital meter, and measures flow rate and water quality parameters (temperature, conductivity) simultaneously. As a result of the water usage analysis by installing six smart water meters on various purposes in office building water usage, the water usage in shower room showed the highest values as the 1,870 L/day and 26.6 liter per capita day (LPCD). But, the water usage in laboratory was irregular, depending on the many variables. From the analysis of the water usage based on day of the week, the water usage on Monday showed the highest value, and tended to decrease toward the weekend. According to the PCA results and multivariate statistical approaches, the shower room (Group 3) and 2 floor man's restroom sink (Group 1-3) have been classified as a separate group, and the others did not show a significant difference in both water use and water quality aspects. From the analysis of water usage measured in this study, the leak or water quality accident did not occur. Consequently, all-in-one smart water meter developed in this study can measure flow rate and water quality parameters (temperature, conductivity) simultaneously with effective field applicability in office building water usage.

Threatening privacy by identifying appliances and the pattern of the usage from electric signal data (스마트 기기 환경에서 전력 신호 분석을 통한 프라이버시 침해 위협)

  • Cho, Jae yeon;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1001-1009
    • /
    • 2015
  • In Smart Grid, smart meter sends our electric signal data to the main server of power supply in real-time. However, the more efficient the management of power loads become, the more likely the user's pattern of usage leaks. This paper points out the threat of privacy and the need of security measures in smart device environment by showing that it's possible to identify the appliances and the specific usage patterns of users from the smart meter's data. Learning algorithm PCA is used to reduce the dimension of the feature space and k-NN Classifier to infer appliances and states of them. Accuracy is validated with 10-fold Cross Validation.

Study on Availability Guarantee Mechanism on Smart Grid Networks: Detection of Attack and Anomaly Node Using Signal Information (스마트그리드 네트워크에서 가용성 보장 메커니즘에 관한 연구: 신호정보를 이용한 공격 및 공격노드 검출)

  • Kim, Mihui
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.2
    • /
    • pp.279-286
    • /
    • 2013
  • The recent power shortages due to surge in demand for electricity highlights the importance of smart grid technologies for efficient use of power. The experimental content for vulnerability against availability of smart meter, an essential component in smart grid networks, has been reported. Designing availability protection mechanism to boost the realization possibilities of the secure smart grid is essential. In this paper, we propose a mechanism to detect the availability infringement attack for smart meter and also to find anomaly nodes through analyzing smart grid structure and traffic patterns. The proposed detection mechanism uses approximate entropy technique to decrease the detection load and increase the detection rate with few samples and utilizes the signal information(CIR or RSSI, etc.) that the anomaly node can not be changed to find the anomaly nodes. Finally simulation results of proposed method show that the detection performance and the feasibility.

Smart Information Monitoring Technology (스마트 정보 모니터링 기술)

  • Kang, Man-Mo;Lee, Dong-Hyung;Koo, Ja-Rok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.225-233
    • /
    • 2010
  • Recently, in the field of Smart Grid, Smart Home Network, Ubiquitous Computing, etc. we have continued to study Smart Information Monitoring Technology(SIMT) which exchange, control and monitor information collected and processed by need in real-time and two-way. In this paper, we understand application products or recent trends of SIMT for Energy, U-Farm, Vehicle Information and Home Network. Specially, we explain Google PowerMeter which exchange information with Smart Meter of core part of the smart grid at real-time, Real-time Monitoring System(RMS) for U-Farm, RMS for vehicle status Information. we subscribe Smart Information Monitoring Technology application based on ZigBee of low price, low power or related work. Finally we subscribe actual proof construction situation of Jesu for smart grid.

Adaptive algorithm for optimal real-time pricing in cognitive radio enabled smart grid network

  • Das, Deepa;Rout, Deepak Kumar
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.585-595
    • /
    • 2020
  • Integration of multiple communication technologies in a smart grid (SG) enables employing cognitive radio (CR) technology for improving reliability and security with low latency by adaptively and effectively allocating spectral resources. The versatile features of the CR enable the smart meter to select either the unlicensed or the licensed band for transmitting data to the utility company, thus reducing communication outage. Demand response management is regarded as the control unit of the SG that balances the load by regulating the real-time price that benefits both the utility company and consumers. In this study, joint allocation of the transmission power to the smart meter and consumer's demand is formulated as a two stage multi-armed bandit game in which the players select their optimal strategies noncooperatively without having any prior information about the media. Furthermore, based on historical rewards of the player, a real-time pricing adaptation method is proposed. The latter is validated through numerical results.

The Device Allocation Method for Energy Efficiency in Advanced Metering Infrastructures (첨단 검침 인프라에서 에너지 효율을 위한 기기 할당 방안)

  • Jung, Sungmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • A smart grid is a next-generation power grid that can improve energy efficiency by applying information and communication technology to the general power grid. The smart grid makes it possible to exchange information about electricity production and consumption between electricity providers and consumers in real-time. Advanced metering infrastructure (AMI) is the core technology of the smart grid. The AMI provides two-way communication by installing a modem in an existing digital meter and typically include smart meters, data collection units, and meter data management systems. Because the AMI requires data collection units to control multiple smart meters, it is essential to ensure network availability under heavy network loads. If the load on the work done by the data collection unit is high, it is necessary to allocation new data collection units to ensure availability and improve energy efficiency. In this paper, we discuss the allocation scheme of data collection units for the energy efficiency of the AMI.

Implementation of ANSI C12.22 Communication Protocol for Two-way Communications of Smart Meter (스마트미터의 양방향 통신을 위한 ANSI C12.22 통신 프로토콜 구현)

  • Lee, Sang-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.815-821
    • /
    • 2013
  • In this paper, application layer protocol of C12.22 node, defined by ANSI C12.22 is implemented. ANSI C12.22 defines application layer only among the OSI 7 layers and recommends using the existing protocols for the 1~4 layer to transmit the information. TCP/IP which is one of the generally used protocols has been applied for the transport and network layer protocol in this paper. ANSI C12.19 defines the parameters for the watt-hour meter, and C12.22 application layer defines the network services and data structures networking the watt-hour meter parameters at a minimum. This kind of services and data structures are used for the configuration, programming, monitoring of the networked watt-hour meter or collecting information of the watt-hour meter. A embedded board has been used to implement the C12.22 application layer and a test program for the AMI application server has been developed for the functional test.

Development of monitoring system and quantitative confirmation device technology to prevent counterfeiting and falsification of meters (주유기 유량 변조방지를 위한 주유기 엔코더 신호 펄스 파형 모니터링 및 정량확인 시스템 개발)

  • Park, Kyu-Bag;Lee, Jeong-Woo;Lim, Dong-Wook;Kim, Ji-hun;Park, Jung-Rae;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.55-61
    • /
    • 2022
  • As meters become digital and smart, energy data such as electricity, gas, heat, and water can be accurately and efficiently measured with a smart meter, providing consumers with data on energy used, so that real-time demand response and energy management services can be utilized. Although it is developing from a simple metering system to a smart metering industry to create a high value-added industry fused with ICT, illegal counterfeiting of electronic meters is causing problems in intelligent crimes such as manipulation and hacking of SW. The meter not only allows forgery of the meter data through arbitrary manipulation of the SW, but also leaves a fatal error in the metering performance, so that the OIML requires the validation of the SW from the authorized institution. In order to solve this problem, a quantitative confirmation device was developed in order to eradicate the act of cheating the fuel oil quantity through encoder pulse operation and program modulation, etc. In order to prevent the act of deceiving the lubricator, a device capable of checking pulse forgery was developed, manufactured, and verified. In addition, the performance of the device was verified by conducting an experiment on the meter being used in the actual field. It is judged that the developed quantitative confirmation device can be applied to other flow meters other than lubricators, and in this case, accurate measurement can be induced.

Attacks, Vulnerabilities and Security Requirements in Smart Metering Networks

  • Hafiz Abdullah, Muhammad Daniel;Hanapi, Zurina Mohd;Zukarnain, Zuriati Ahmad;Mohamed, Mohamad Afendee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1493-1515
    • /
    • 2015
  • A smart meter is one of the core components in Advanced Metering Infrastructure (AMI) that is responsible for providing effective control and monitor of electrical energy consumptions. The multifunction tasks that a smart meter carries out such as facilitating two-way communication between utility providers and consumers, managing metering data, delivering anomalies reports, analyzing fault and power quality, simply show that there are huge amount of data exchange in smart metering networks (SMNs). These data are prone to security threats due to high dependability of SMNs on Internet-based communication, which is highly insecure. Therefore, there is a need to identify all possible security threats over this network and propose suitable countermeasures for securing the communication between smart meters and utility provider office. This paper studies the architecture of the smart grid communication networks, focuses on smart metering networks and discusses how such networks can be vulnerable to security attacks. This paper also presents current mechanisms that have been used to secure the smart metering networks from specific type of attacks in SMNs. Moreover, we highlight several open issues related to the security and privacy of SMNs which we anticipate could serve as baseline for future research directions.

Deep Learning-Based Smart Meter Wattage Prediction Analysis Platform

  • Jang, Seonghoon;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.173-178
    • /
    • 2020
  • As the fourth industrial revolution, in which people, objects, and information are connected as one, various fields such as smart energy, smart cities, artificial intelligence, the Internet of Things, unmanned cars, and robot industries are becoming the mainstream, drawing attention to big data. Among them, Smart Grid is a technology that maximizes energy efficiency by converging information and communication technologies into the power grid to establish a smart grid that can know electricity usage, supply volume, and power line conditions. Smart meters are equient that monitors and communicates power usage. We start with the goal of building a virtual smart grid and constructing a virtual environment in which real-time data is generated to accommodate large volumes of data that are small in capacity but regularly generated. A major role is given in creating a software/hardware architecture deployment environment suitable for the system for test operations. It is necessary to identify the advantages and disadvantages of the software according to the characteristics of the collected data and select sub-projects suitable for the purpose. The collected data was collected/loaded/processed/analyzed by the Hadoop ecosystem-based big data platform, and used to predict power demand through deep learning.