• Title/Summary/Keyword: Smart Meter

Search Result 162, Processing Time 0.025 seconds

Electric Power Energy Saving and Efficient Measures in Buildings using the Smart-Meter (스마트미터를 활용한 건축물의 전력에너지 절감 및 효율화 방안)

  • Hwang, Hyun Bae;Jung, Byeong Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.365-372
    • /
    • 2014
  • In this paper, We implement a power-saving and efficient measures in buildings using the smart-meter. In order to save electric power energy, We propose an improved automatic power-factor controller(APFC) and demand control measures. This is achieved by controlling directly circuit breakers and the capacitor bank feeders in real time via a two-way smart-meter's ICT skills. Improved APFC is minimizing installation costs by series-parallel connecting heterologous capacitors to form a more diverse capacitor banking and controlling using the smart-meter. In order to suppress the demand power, We have designed a smart-meter with communication functions using Atmel's AVR465 and tested an operated lodging building for 24-hours. As a result, We made sure to always retained more than 95% power factor and did not occur over compensation.

Implementation of Smart Meter Applying Power Consumption Prediction Based on GRU Model (GRU기반 전력사용량 예측을 적용한 스마트 미터기 구현)

  • Lee, Jiyoung;Sun, Young-Ghyu;Lee, Seon-Min;Kim, Soo-Hyun;Kim, Youngkyu;Lee, Wonseoup;Sim, Issac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.93-99
    • /
    • 2019
  • In this paper, we propose a smart meter that uses GRU model, which is one of artificial neural networks, for the efficient energy management. We collected power consumption data that train GRU model through the proposed smart meter. The implemented smart meter has automatic power measurement and real-time observation function and load control function through power consumption prediction. We determined a reference value to control the load by using Root Mean Squared Error (RMS), which is one of performance evaluation indexes, with 20% margin. We confirmed that the smart meter with automatic load control increases the efficiency of energy management.

Open-channel discharges evaluation by the application of smart sensors

  • Khatatbeh, Arwa;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.138-138
    • /
    • 2022
  • Understanding a stream's or river's discharge is essential for a variety of hydrological and geomorphological applications at various sizes. However, depending on the stream environment and flow conditions, it is crucial to use the appropriate techniques and instruments. This will ensure that discharge estimations are as reliable as possible. This study presents developed smart system for continuous measurement of open channel discharge and evaluate streamflow measurement over various techniques. This includes developed smart flow meter as flow point measurements, smart water level sensor (installed on Hydraulic Structure ? Weir) and current meters. Advantages and disadvantages of each equipment are presented to ensure that the most appropriate method can be selected. we found that smart water level sensor is more prominent once used during flood event as compared to smart flow meter and current meters, while current meters seems to show better accuracy once applied for open channel.

  • PDF

Recent Developments and Field Application of Foreign Waterworks Automatic Meter Reading (국외 상수도 원격검침시스템의 개발 동향 및 현장 적용 사례 고찰)

  • Joo, Jin Chul;Ahn, Hosang;Ahn, Chang Hyuk;Ko, Kyung-Rok;Oh, Hyun-Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.863-870
    • /
    • 2012
  • The market trends of automatic meter reading associated with smart water meters were investigated. Also, recent developments and field applications of key technology for automatic meter reading associated with smart water meters were analyzed. Smart water meters have been manufactured mostly in United States and Europe and have been expanded their business to Asia. Integrated water management system combining with the additional functions such as real-time consumption metering, cost notification, water conservation, leak detection, water quality monitoring, and flow control have been operated in automatic meter reading. Both water quality and quantity data measured from smart water meters and sensors were transferred to data concentration units through neighborhood area network, and then were transferred to integrated server through wide area network. The data transfer methods were determined by comprehensively considering urban scale, density of smart water meters, power supply and network topologies. Common data collection methods such as fixed network to data concentation units, vehicles drive by, people walk by, and drone fly by have been applied. The automatic meter reading associated with smart water meters are spread throughout the world, and both water and energy savings result in saving the money and reducing the greenhouse gases emission.

The Telemedicine System based ECG Data using Bio-Signal Meter and Smart Device (생체신호 측정기와 스마트 디바이스를 활용한 심전도 데이터 기반의 원격진료 시스템)

  • Kim, Yi-Seul;Cho, Jinsoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.51-56
    • /
    • 2012
  • In this paper, we propose a telemedicine system based ECG data using a bio-signal meter and a smart device for treating faraway patients. This system is composed of a patch-shaped portable bio-signal meter, patient's smart device application, and doctor's PC software. Using these components, doctors and patients can do telemedicine. First, a patient measures his own ECG signal with a bio-signal meter and send the data to a doctor using a smart device application. Then, the doctor checks the ECG data, and make and send a diagnosis chart to web server. Likewise, doctors and patients can be offered a medical environment without time and space restraints. Applying this system to real medical system can improve the problem of low accessibility and efficiency and also can reduce medical expenses.

Implementation of Secure System for Blockchain-based Smart Meter Aggregation (블록체인 기반 스마트 미터 집계 보안 시스템 구축)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • As an important basic building block of the smart grid environment, smart meter provides real-time electricity consumption information to the utility. However, ensuring information security and privacy in the smart meter data aggregation process is a non-trivial task. Even though the secure data aggregation for the smart meter has been a lot of attention from both academic and industry researchers in recent years, most of these studies are not secure against internal attackers or cannot provide data integrity. Besides, their computation costs are not satisfactory because the bilinear pairing operation or the hash-to-point operation is performed at the smart meter system. Recently, blockchains or distributed ledgers are an emerging technology that has drawn considerable interest from energy supply firms, startups, technology developers, financial institutions, national governments and the academic community. In particular, blockchains are identified as having the potential to bring significant benefits and innovation for the electricity consumption network. This study suggests a distributed, privacy-preserving, and simple secure smart meter data aggregation system, backed up by Blockchain technology. Smart meter data are aggregated and verified by a hierarchical Merkle tree, in which the consensus protocol is supported by the practical Byzantine fault tolerance algorithm.

Study on Development of Performance Evaluation Guidelines for Leak Test Smart Gas Meter (누출점검용 스마트가스미터의 성능시험 가이드라인 개발 연구)

  • Kim, Minjun;Oh, Jeong Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.5
    • /
    • pp.8-14
    • /
    • 2019
  • Although the rate of city gas supply in South Korea has grown significantly, the fields related to gas meters have not yet escaped from the initial method of service (e.g. measurement, safety checks, billing, etc). As smart gas meters are actively developed and researched, the introduction of smart gas meters requires rational performance evaluation methods and standards to verify reliability and safety. The purpose of this paper is to make a prototype of the performance evaluation to test the performance of the smart gas meter and to derive the performance evaluation method by conducting the demonstration operation so that the smart gas meter can be smoothly distributed in South Korea.

Development and Performance Test of DC Smart Metering System for the DC Power Measurement of Urban Railway (도시철도 직류 전력량 계측을 위한 직류용 스마트미터링 시스템 개발 및 성능시험)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Jongyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.713-718
    • /
    • 2014
  • DC urban railway power system consists of DC power network and AC power network. The DC power network supplies electric power to railway vehicles and the AC power network supplies electric power to station electric equipment. Recently, because of power consumption reduction and peak load shaving, intelligent measurement of regenerative energy and renewable energy adapted on DC urban railway is required. For this reason, DC smart metering system for DC power network shall be developed. Therefore, in this paper, DC voltage sensor, current sensor, and DC smart meter were developed and evaluated by performance test. DC voltage sensor was developed for measuring standard voltage range of DC urban railway, and DC current sensor was developed as hall effect split core type in order to install in existing system. DC smart meter possesses function of general intelligent electric power meter, such as measuring electricity and wireless communication etc. And, DC voltage sensor showed average 0.17% of measuring error for 2,000V/50mA, and current sensor showed average 0.21% of measuring error for ${\pm}2,000V/{\pm}4V$ in performance test. Also DC smart meter showed maximum 0.92% of measuring error for output of voltage sensor and current sensor. In similar environment for real DC power network, measuring error rate was under 0.5%. In conclusion, accuracy of DC smart metering system was confirmed by performance test, and more detailed performance will be verified by further real operation DC urban railway line test.

A Case Study of the Impact of a Cybersecurity Breach on a Smart Grid Based on an AMI Attack Scenario (AMI 공격 시나리오에 기반한 스마트그리드 보안피해비용 산정 사례)

  • Jun, Hyo-Jung;Kim, Tae-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.809-820
    • /
    • 2016
  • The smart grid, a new open platform, is a core application for facilitating a creative economy in the era of the Internet of Things (IoT). Advanced Metering Infrastructure (AMI) is one of the components of the smart grid and a two-way communications infrastructure between the main utility operator and customer. The smart meter records consumption of electrical energy and communicates that information back to the utility for monitoring and billing. This paper investigates the impact of a cybersecurity attack on the smart meter. We analyze the cost to the smart grid in the case of a smart meter attack by authorized users based on a high risk scenario from NESCOR. Our findings could be used by policy makers and utility operators to create investment decision-making models for smart grid security.

Smart meter data transmission device and power IT system using LTE and IoT technologies (LTE와 IoT 기술을 이용한 스마트미터 데이터 전송장치와 전력 IT 시스템)

  • Kang, Ki-Beom;Kim, Hong-Su;Jwa, Jeong-Woo;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.117-124
    • /
    • 2017
  • A Smart Grid is a system that can efficiently use energy by exchanging real-time information in both directions between a consumer and a power supplier using ICT technology on an existing power network. DR(Demand response) is an arrangement in which electricity users can sell the electricity they save to the electricity market when the price of electricity is high or the power system is crisis. In this study, we developed a power meter data transmission device and power IT system that measure the demand information in real-time using a smart meter and transmit it to a cloud server. The power meter data transmission device developed in this study uses alight sensor connected to a Raspberry Pi 3 to measure the number of blinking lamps on the KEPCO meter per unit of power, in order to provide reliable data without any measurement errors with respect to the KEPCO power data. The power measurement data transmission device uses the standard communication protocol, OpenADR 2.0b. The measured data is transmitted to the power IT system, which consists of the VEN, VTN, and calculation program, via the LTE WiFi communication network and stored in its MySQL DB. The developed power measurement data transmission device issues a power supply instruction and performs a peak reduction DR when a power system crisis occurs. The developed power meter data transmission device has the advantage of allowing the user to adjust it every 1 minute, where as the existing smart metering time is fixed at once every 15 minutes.