• Title/Summary/Keyword: Smart Manufacturing System

Search Result 365, Processing Time 0.024 seconds

Process and Quality Data Integrated Analysis Platform for Manufacturing SMEs (중소중견 제조기업을 위한 공정 및 품질데이터 통합형 분석 플랫폼)

  • Choe, Hye-Min;Ahn, Se-Hwan;Lee, Dong-Hyung;Cho, Yong-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.176-185
    • /
    • 2018
  • With the recent development of manufacturing technology and the diversification of consumer needs, not only the process and quality control of production have become more complicated but also the kinds of information that manufacturing facilities provide the user about process have been diversified. Therefore the importance of big data analysis also has been raised. However, most small and medium enterprises (SMEs) lack the systematic infrastructure of big data management and analysis. In particular, due to the nature of domestic manufacturing companies that rely on foreign manufacturers for most of their manufacturing facilities, the need for their own data analysis and manufacturing support applications is increasing and research has been conducted in Korea. This study proposes integrated analysis platform for process and quality analysis, considering manufacturing big data database (DB) and data characteristics. The platform is implemented in two versions, Web and C/S, to enhance accessibility which perform template based quality analysis and real-time monitoring. The user can upload data from their local PC or DB and run analysis by combining single analysis module in template in a way they want since the platform is not optimized for a particular manufacturing process. Also Java and R are used as the development language for ease of system supplementation. It is expected that the platform will be available at a low price and evolve the ability of quality analysis in SMEs.

Price estimation based on business model pricing strategy and fuzzy logic

  • Callistus Chisom Obijiaku;Kyungbaek Kim
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.54-61
    • /
    • 2023
  • Pricing, as one of the most important aspects of a business, should be taken seriously. Whatever affects a company's pricing system tends to affect its profits and losses as well. Currently, many manufacturing companies fix product prices manually by members of an organization's management team. However, due to the imperfect nature of humans, an extremely low or high price may be fixed, which is detrimental to the company in either case. This paper proposes the development of a fuzzy-based price expert system (Expert Fuzzy Price (EFP)) for manufacturing companies. This system will be able to recommend appropriate prices for products in manufacturing companies based on four major pricing strategic goals, namely: Product Demand, Price Skimming, Competition Price, and Target population.

The System Architecture and Standardzation of Production IT Convergence for Smart Factory (스마트공장을 위한 IT 융합 표준화 동향 분석과 시스템 구조)

  • Cha, Suk Keun;Yoon, Jae Young;Hong, Jeong Ki;Kang, Hyun Gu;Cho, Hyeon Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • Smart factory requires 4 Zero factors including Zero Waiting-time, Zero Inventory, Zero Defect, Zero Down-time) that needs IT convergence for production resources of 4M1E(Man, Machine, Material, Method, Energy) in real time and event processing in all type of manufacturing enterprises. This paper will be explaining about core emerging production IT convergence technologies including cyber device security, 4M1E integration, real time event driven architecture, common platform of manufacturing standard applications, smart factory to-be model for small and medium manufacturing enterprises.

Strategies of smart factory building and Application of small & medium-sized manufacturing enterprises (스마트팩토리 구축전략과 중소.중견 제조기업의 적용 방안)

  • Park, Jong-Shik;Kang, Kyung-sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.227-236
    • /
    • 2017
  • Smart Manufacturing Factory is a paradigm of the future lead to the fourth industrial revolution that led Germany and the United States. Now the automation of the production facility and won a certain degree, and through the process of integrating the entire process, including planning, design, distribution of information and communication technology products in emerging as a core competitiveness of the national economy. In particular, the company accelerated the smart factory building in order to improve the manufacturing industry, cost savings and productivity simply to incorporate internet of things(IoT),Robot, artificial intelligence, big data technology as a factory automation level of sophistication of the system and out to progress to the level that replaces human labor have. In this we should look at the trend of promoting domestic and foreign factories want to present these smart strategies for Korea.

Technology and Issue on Embodiment of Smart Factory in Small-Medium Manufacturing Business (중소제조업 스마트공장 기술 동향과 이슈)

  • Park, Jong-man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2491-2502
    • /
    • 2015
  • Main issue for embodiment of smart factory in small-medium manufacturing business(SMMB) is to whether might be successful or not in achieving a goal, exact materializing for smart factory related technology, and in seeking possible solutions for limited capacity to invest and develop technology. It is required for effective driving of manufacturing innovation 3.0 paradigm that ensures expertise to push forward technology policy based on value chain level of SMMB, and ensures detailed action plans by investment priority and development of core technology against global trend. This paper focuses to suggest countermeasure strategy and task through analysis of advanced technology and patent trend about industrial IoT(IIoT) and cyber physical system(CPS), and support embodiment of smart factory in underlying manufacturing innovation 3.0 scheme.

Effect of TRI on UTAUT in Transformation to Smart Factory: Focusing on Small and Medium-sized Manufacturing Companies (스마트 팩토리로의 전환에 있어서 기술준비도가 통합기술수용요인에 미치는 영향: 중소 제조 기업을 중심으로)

  • Lee, Yong-Gyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.1-17
    • /
    • 2022
  • The purpose of this study is to suggest a plan to improve the level of acceptance of related technologies and the transition to smart factories of small and medium-sized manufacturing enterprises by using 'technology readiness' and 'integrated technology acceptance model'. To this end, the research hypothesis was verified by collecting questionnaire data from 130 small and medium-sized manufacturing companies in Korea and conducting path analysis. First, optimism affects performance expectations, social influence, and facilitation conditions, innovation affects performance expectations, effort expectations, and social influence, discomfort affects performance expectations, social influence, and facilitation conditions, and anxiety affects effort expectations, social influence and facilitation conditions. has been proven to affect Finally, performance expectations, effort expectations, social influence, and facilitation conditions were verified to have a significant positive effect on the intention to accept technology.

A Case Study on Lead Time Improvement Using a Simulation Approach (시뮬레이션 방식을 이용한 리드 타임 개선 사례 연구)

  • Ro, Wonju;Sim, Jaehun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.140-152
    • /
    • 2021
  • During the shift from gasoline vehicles to electric ones, auto parts manufacturing companies have realized the importance of improvement in the manufacturing process that does not require any layout changes nor extra investments, while maintaining their current production rate. Due to these reasons, for the auto part manufacturing company, I-company, this study has developed the simulation model of the PUSH system to conduct a process analysis in terms of production rate, WIP level, and logistics work's utilization rate. In addition, this study compares the PUSH system with other three manufacturing systems -KANBAN, DBR, and CONWIP- to compare the performance of these production systems, while satisfying the company's target production rate. With respect to lead-time, the simulation results show that the improvement of 77.90% for the KANBAN system, 40.39% for the CONWIP system, and 69.81% for the DBR system compared to the PUSH system. In addition, with respect to WIP level, the experimental results demonstrate that the improvement of 77.91% for the KANBAN system, 40.41% for the CONWIP system, and 69.82% for the DBR system compared to the PUSH system. Since the KANBAN system has the largest impacts on the reduction of the lead-time and WIP level compared to other production systems, this study recommends the KANBAN system as the proper manufacturing system of the target company. This study also shows that the proper size of moving units is four and the priority allocation of bottleneck process methods improves the target company's WIP and lead-time. Based on the results of this study, the adoption of the KANBAN system will significantly improve the production process of the target company in terms of lead-time and WIP level.

Technology Standards Policy Support Plans for the Advancement of Smart Manufacturing: Focusing on Experts AHP and IPA (스마트제조 고도화를 위한 기술표준 정책영역 발굴 및 우선순위 도출: 전문가 AHP와 IPA를 중심으로)

  • Kim, Jaeyoung;Jung, Dooyup;Jin, Young-Hyun;Kang, Byung-Goo
    • Informatization Policy
    • /
    • v.30 no.4
    • /
    • pp.40-61
    • /
    • 2023
  • The adoption of smart factories and smart manufacturing as strategies to enhance competitiveness and stimulate growth in the manufacturing sector is vital for a country's future competitiveness and industrial transformation. The government has consistently pursued smart manufacturing innovation policies starting with the Manufacturing Innovation 3.0 strategy in the Ministry of Industry. This study aims to identify policy areas for smart factories and smart manufacturing based on technical standards. Analyzing policy areas at the current stage where the establishment and support of domestic standards aligning with international technical standards are required is crucial. By prioritizing smart manufacturing process areas within the industry, policymakers can make well-informed decisions to advance smart manufacturing without blindly following international standardization in already well-established areas. To achieve this, the study utilizes a hierarchical analysis method including expert interviews and importance-performance analysis for the five major process areas. The findings underscore the importance of proactive participation in standardization for emerging technologies, such as data and security, instead of solely focusing on areas with extensive international standardization. Additionally, policymakers need to consider carbon emissions, energy costs, and global environmental challenges to address international trends in export and digital trade effectively.

Development of Multi-purpose Smart Sensor Using Presence Sensor (재실 감지 센서를 이용한 다용도 스마트 센서 개발)

  • Cha, Joo-Heon;Yong, Heong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • This paper introduces a multi-purpose smart fusion sensor. Normally, this type of sensor can contribute to energy savings specifically related to lighting and heating/air conditioning systems by detecting individuals in an office building. If a fire occurs, the sensor can provide information regarding the presence and location of residents in the building to a management center. The system consists of four sensors: a thermopile sensor for detecting heat energy, an ultrasonic sensor for measuring the distance of objects from the sensor, a fire detection sensor, and a passive infrared sensor for detecting temperature change. The system has a wireless communication module to provide the management center with control information for lighting and heating/air conditioning systems. We have also demonstrated the usefulness of the proposed system by applying it to a real environment.