최근 사용자 정보와 주변 환경의 정보를 수집할 수 있는 센서의 기술과 휴대 디바이스의 성능이 매우 발달되어 왔다. 이러한 기술 발달로 인해 사용자는 매우 다양한 콘텐츠를 이용할 수 있게 되었다. 그러나 사용자가 휴대한 디바이스의 특성에 따라 이용할 수 있는 콘텐츠가 제한적이다. 이것을 해결하기 위해 하나의 콘텐츠를 여러 디바이스에서 사용하기 위한 연구가 활발히 진행 중이다. 본 연구에서는 사용자 주변의 센서를 통한 다양한 정보를 수집하여 사용자의 상황에 맞는 특정 콘텐츠를 선정하고, 선정된 콘텐츠를 사용자가 휴대한 디바이스 특성에 맞게 변환하여 서비스를 제공하는 시스템을 제안한다.
많은 기관들이 데이터에 기반을 둔 의사결정을 수행해 왔으며, 특히 수치자료를 비롯한 정형 데이터가 이러한 목적으로 널리 활용되어 왔다. 하지만 최근에는 스마트기기와 소셜미디어의 발달로 인해 다양한 형태를 가진 방대한 양의 정보가 생성, 공유, 저장되면서, 전통적인 정형 데이터 기반 의사결정으로부터 비정형 빅데이터 기반 의사결정으로 관심의 전환이 이루어지고 있다. 데이터 기반 의사결정의 대표적 분야인 추천시스템 분야에서도 성능 향상을 위해 비정형 데이터를 활용해야 한다는 필요성이 최근 꾸준히 제기되고 있다. 특히 사용자의 성향이나 선호도는 고객의 니즈와 직결되기 때문에, 비정형 데이터 분석을 통해 사용자의 성향을 파악하고 이를 통해 상품 추천 및 구매 예측의 정확도를 향상시키기 위한 노력이 매우 시급하게 이루어질 필요가 있다. 따라서 본 연구에서는 사용자의 성향을 측정하여 재구매 예측 정확도, 특히 카테고리별 재구매 예측 정확도를 높임으로써, 궁극적으로 추천시스템의 성능을 향상시킬 수 있는 방안을 제시한다. 구체적으로는 사용자의 일상적인 인터넷 사용 기록을 분석하여 고객이 조회하는 뉴스 기사의 이슈를 식별하고 다양한 이슈에 대한 고객의 관심을 계량화한 후, 이를 활용하여 고객의 카테고리별 재구매 여부를 예측하는 모델을 제안하고자 한다. 실제 웹 트랜잭션으로부터 도출된 인터넷 뉴스 조회 기록 및 쇼핑몰 구매 기록을 대상으로 실험을 수행한 결과, 고객의 과거 구매이력만을 활용한 카테고리 재구매 예측 모형에 비해 본 연구에서 제안한 모형, 즉 고객의 과거 구매이력과 관심 이슈를 모두 활용한 예측 모형의 정확도가 다소 우수한 것으로 나타났다.
데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.
"2016 인터넷이용실태조사"에 따르면 인터넷 이용자수 및 이용률은 점점 증가하고 있으며 접속방법에 있어서는 컴퓨터보다 스마트폰을 통한 접속이 많아지고 있다. 스마트기기의 증가에 따라 초고속인터넷의 수요가 감소할 것이라는 전망도 있다. 하지만, 스마트기기의 증가에도 불구하고 기가인터넷을 통한 속도 향상과 IoT 시장의 성장으로 인해 초고속인터넷 시장은 당분간 유지될 것으로 전망된다. 시장의 포화로 인해 통신사업자들이 신규고객 확보를 위해 과도한 경쟁을 하고 있지만, 고객이탈의 원인을 알 수 있다면 보다 효과적인 마케팅을 통해 과도한 마케팅비용을 절감할 수 있을 것으로 기대된다. 본 연구에서는 통신사업자 A사가 보유하고 있는 안양시, 군포시, 의왕시 3개 도시의 결합유형별 해지 데이터와, 통계청으로부터 구한 지역별 데이터를 결합하여, 지역별 해지율과 이에 영향을 미치는 지역특성간의 관계를 분석하고자 하였다. 특히 인접지역에 따라 결합유형별 해지율의 분포에 차이가 있을 것으로 보고, 클러스터링을 이용하여 해지유형이 유사한 지역을 도출 및 분석하고자 하였다. 공간검색통계도구인 SatScan은 기존의 클러스터링 방법에 공간정보를 추가하여 인접지역을 중심으로 군집이 형성되도록 한다. 따라서 본 연구에서는 SatScan을 이용해 지역의 공간정보를 기반으로 유사지역을 군집화하고, 군집별 해지율과 지역별 데이터와의 연관성을 분석하였다. 분석 단계에서는 먼저 공간정보와 해지데이터를 결합하여 도출된 군집들의 특성을 정리하였으며, 다음으로 군집분석 결과를 바탕으로 하여 각 동의 초고속 인터넷 해지율과 지역별 데이터와의 연관성을 분산분석, 상관분석, 회귀분석을 이용하여 분석하였다. 그리고, 분석결과를 기반으로 하여 지역에 따른 적절한 마케팅 방안을 제안하였다.
제주도는 지질 및 수문계의 특이성으로 인해 수문기상인자 분석을 통한 수문 분석 및 효율적인 물관리가 필수적이다. 하지만 수문기상인자의 지상관측자료는 주변 환경에 의한 영향이 크게 작용하여 공간적인 대표성을 띄기 힘들며, 이를 극복하기 위해 원격탐사 방법이 사용된다. 본 연구에서는 제주도에서 기존에 다른 지역들에서 적용성이 검증된 바 있는 MOD16 증발산량, Global Land Data Assimilation System (GLDAS) 증발산량, GLDAS 토양수분, Advanced SCATerometer(ASCAT) 토양수분 산출물들의 적용성을 평가하였다. 증발산의 경우 강수량과의 총량 비교 및 플럭스타워 증발산량 관측자료와의 비교를 시행하였고, 토양수분의 경우 6개 토양수분 관측소의 관측자료와 비교하였다. 그 결과 증발산량의 경우 연 강수량의 57%가 증발산량으로 산출되었고, MOD16 증발산량과 GLDAS 증발산량의 상관계수는 0.759로 양호한 값이 산출되었으나, 플럭스타워 증발산량 데이터와 MOD16 증발산량의 상관계수는 0.289, GLDAS 증발산량과의 상관계수는 0.434로 상대적으로 적합성이 낮게 나타났다. 토양수분의 경우 GLDAS 자료의 경우 모든 지점에서 지점자료와 비교하였을 때 RMSE 값은 0.05 미만의 값을 나타냈고, 상관계수의 유의성 검정 결과 통계적으로 유의미한 결과를 얻었다. 하지만 위성자료의 경우 월각지점에서 0.05 이상의 RMSE 값이 나타났고, 세화, 한동 지점에서 상관성이 없다는 상관계수의 유의성 검정 결과를 확인하였다. 이는 제주도에 설치된 증발산량 및 토양수분 센서의 품질관리 및 공간대표성을 띄는 면단위 센서가 충분히 제공되지 않아 위와 같은 결과가 나타나는 것으로 판단된며 더불어 지점 자료의 관리 및 위성, 재분석 자료의 경우 관측 픽셀이 해안과 인접할 시 나타나는 오차로 추정된다. 본 연구를 통해 기존 수문기상인자 지상관측 자료의 개선 필요성을 역셜하고, 이를 통해 제주도에서의 효율적인 물관리 를 위한 기반을 구축하고자 한다.
CRM의 하위 연구 분야로 진행되었던 고객이탈예측은 최근 비즈니스 머신러닝 기술의 발전으로 인해 빅데이터 기반의 퍼포먼스 마케팅 주제로 더욱 그 중요도가 높아지고 있다. 그러나, 기존의 관련 연구는 예측 모형 자체의 성능을 개선시키는 것이 주요 목적이었으며, 전체적인 고객이탈예측 프로세스를 개선하고자 하는 연구는 상대적으로 부족했다. 본 연구는 성공적인 고객이탈관리가 모형 자체의 성능보다는 전체 프로세스의 개선을 통해 더 잘 이루어질 수 있다는 가정하에, 이차원 고객충성도 세그먼트 기반의 고객이탈예측 프로세스 (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation)를 제안한다. CCP/2DL은 양방향, 즉 양적 및 질적 로열티 기반의 고객세분화를 시행하고, 고객세그먼트들을 이탈패턴에 따라 2차 그룹핑을 실시한 뒤, 이탈패턴 그룹별 이질적인 이탈예측 모형을 독립적으로 적용하는 일련의 이탈예측 프로세스이다. 제안한 이탈예측 프로세스의 상대적 우수성을 평가하기 위해 기존의 범용이탈예측 프로세스와 클러스터링 기반 이탈예측 프로세스와의 성능 비교를 수행하였다. 글로벌 NGO 단체인 A사의 협력으로 후원자 데이터를 활용한 분석과 검증을 수행했으며, 제안한 CCP/2DL의 성능이 다른 이탈예측 방법론보다 우수한 성능을 보이는 것으로 나타났다. 이러한 이탈예측 프로세스는 이탈예측에도 효과적일 뿐만 아니라, 다양한 고객통찰력을 확보하고, 관련된 다른 퍼포먼스 마케팅 활동을 수행할 수 있는 전략적 기반이 될 수 있다는 점에서 연구의 의의를 찾을 수 있다.
최근 관심이 집중되고 있는 스마트온실의 기술적용 실태와 문제점을 파악하고 이를 토대로 단동온실의 ICT 기술적용 장애요인 극복과 생산성을 제고하기 위하여 실험을 수행하였다. 자동화 시설의 도입 장애요인으로는 시설비 부담(24%)이 높았으며, 설치업체 사후관리 미흡(19%), 잦은 고장(16%), 관리기술 미흡(15%), 기능 미흡(13%), 소득향상기여 미흡(12%) 순이었다. ICT 도입필요성은 노동력절감(15%)이 가장 높았다. 자동화 온실에서 문제가 발생되는 부분은 온실구조, 구동기제어, 복합환경제어기, 센서기술이 각 14%로 비슷하였고, 원격제어기술 13%, 작물관리기술 12%, 에너지절감기술 10%, 소프트웨어활용 8%이었다. 온실구조 측면에서의 문제점은 천창개선이 18%로 가장 많았다. 효율적인 온도 및 환기 제어를 위해 농촌진흥청 고시 10-단동-7형 온실에 랙피니언 천창을 추가하였으며, 지붕형태를 복숭아형으로 변경하였다. 온실내 환경의 균일성을 위해 공기 유동팬은 6대를 설치하도록 하되 필요에 따라 증설 가능하도록 하였으며, 에너지 절약을 위해 1, 2중은 두께 0.1mm필름을 사용하고 3중은 5겹보온커튼을 설치하였다. CFD 유동해석 결과, 측창이 열린조건에서는 풍상 방향의 평균 유속이 빠르고 온도가 낮았으며, 풍하 방향으로 멀어 질수록 평균 유속이 점차 느려지고 온도는 높게 나타났다. 반면, 측창이 닫힌조건에서는 평균 유속이 낮으며, 구역별로 큰 편차는 없었다. 다만 풍상 풍하의 천창이 모두 열린 조건에 비하여 풍하 방향의 천창만 열린조건이 영역별 평균 유속에서 더 높은 값을 보였다. 측창을 닫은 조건에서는 외기의 유동이 아닌 온실 내 설치된 환기용 유동팬에 의해 유속이 발생하며 외부 환기가 없는 조건에서 유동팬에 의한 순환은 실내 전체 공간의 유동 편차를 줄여 줄 수는 있지만 전체적인 온도에는 영향을 미치지 못하였다. 저측고의 영역별 평균 온도는 고측고보다 균일하게 나타났다. 겨울철 3중 다겹보온커튼 여닫음에 관계없이 유동팬 근처에서 유속이 높고 유동팬에서 멀어지면 유속이 거의 없는 것으로 나타났다. 또한, 시간경과에 따른 평균 온도는 3중다겹보온커튼 열림상태에서 약 2시간 후에 외부온도와 같아졌으나 닫힘상태에서는 5시간 이후에 외부온도와 같아져, 3중 다겹보온커튼의 보온효과가 뚜렷하였다. 같은 조건에서 열용량의 차이로 인해 저측고 온실이 고측고 온실에 비하여 온도 하강 속도가 빨랐다.
가치가 상승하는 와인에 투자하는 것은 바람직하지만 우리나라에서는 와인 투자 자체가 생소하다. 또한, 와인시장에서의 가격책정은 소수에 의해 이루어지기 때문에 과정 자체가 비합리적이고, 정보가 위조되는 경우가 흔하다. 그러나 올바른 해결책만 있다면 와인시장은 오래 투자할수록 높은 수익을 기대할 수 있다는 점에서 바람직한 투자처가 될 수 있다. 또한, 국내 와인수입량의 꾸준한 증가추세를 통한 국내 와인 소비시장의 확대 또한 기대된다. 본 연구는 앞서 말한 우리나라의 와인 투자 시장의 '올바른 해결책'으로 와인시장 활성화 및 투명성 제고를 위한 컨소시엄 블록체인 프레임워크를 제시한다. 블록체인 거버넌스는 바람직한 의사결정권과 책임성을 보장하기 때문에 와인시장의 단점을 보완해줄 수 있다. 블록체인에 저장된 데이터는 소비자가 모두 확인할 수 있기 때문에 위조와인의 등장 가능성을 낮추고 불합리적으로 가격이 책정되는 과정을 보완한다. 또한 자산의 디지털화로 낮은 현금유동성을 해결하며 스마트 컨트랙트를 통해 공급망 전반의 비용과 시간을 절약하게 되어 와인투자의 진입장벽이 낮아진다. 특히 컨소시엄 블록체인을 통해 블록체인의 거버넌스를 '샤또-유통업자-투자자'로 구성한다면 바람직한 와인 시장을 형성할 수 있다. 생산과정을 블록체인에 저장하여 생산비용을 확보하고 합리적인 출시가를 정하며 유통과정을 블록체인에 저장하여 물류시스템을 효율적으로 운영하고 선물거래 주문량을 예측한다. 마지막으로 투자자들은 이 모든 데이터를 열람함으로써 합리적인 의사결정을 한다. 이는 와인경매시장에 있어서 주요 이해관계자들간의 지식공유체제로서 작동할 수 있는 가능성을 제시하고 있다. 해당 연구에서는 소유권을 주식처럼 다룰 수 있다는 점에서 대체투자의 새로운 관점을 제시했다. 또한 정보의 투명성을 제고시킬 방안으로써 와인 소유 매매 프레임워크를 제시하였고 식품 수입절차의 간소화와 와인 업계 내 신뢰 형성을 가능하게 했다. 해당 프레임워크를 통해 와인 관련 정보들을 투명하게 기록함으로써 활발한 와인투자가 이루어질 수 있을 것이며 이는 지식경영 측면에서 큰 의의를 가진다. 향후 연구에서는 해당 프레임워크를 확장해 적용할 분야를 연구하고자 한다.
기상 및 기후 정보를 활용하여 기후변화에 대응하기 위한 기후 스마트 농업을 도입하기 위한 노력이 진행되어 왔다. 기후 스마트 농업을 실현하기 위해 농가별 기상자료 수집 및 관리가 요구된다. 4차 산업혁명 시대의 주요한 기술인 IoT, 인공지능, 및 클라우드 컴퓨팅 기술들이 농가 단위의 기상정보 생산에 적극적으로 활용될 수 있다. 저비용과 저전력 특성을 가진 IoT 센서들로 무선 센서 네트워크를 구축할 경우, 농가나 농촌 공동체 수준에서 농업 생태계의 생산성을 파악할 수 있는 기상관측자료의 수집 및 분석이 가능하다. 무선 센서 네트워크를 통해 자료가 수집될 수 있는 공간적인 범위를 특정 농가보다는 농촌 공동체 수준으로 확대하여 IoT 기술의 수혜 농가를 확대하고, 아울러 상세기상정보의 생산 및 검증에 활용가능한 농업기상 빅데이터 구축이 필요하다. 기존에 개발되어 보급되고 있는 전자기후도를 활용하여, 농가 단위의 기상 추정 자료가 제공되고 있다. 이들 자료의 신뢰성을 향상시키고, 기존의 서비스 체계에서 제공되지 않고 있는 기상 변수들을 지원하기 위해 심층신경망과 같은 인공지능 기술들이 도입되어야 할 것이다. 시스템 구축의 비용 절감 및 활용성 증대를 위해 클라우드 및 포그 컴퓨팅 기술을 도입하여 농업 기상 정보 서비스 시스템이 설계되어야 한다. 또한, 기상자료와 농산물 가격 정보와 같은 환경자료와 경영정보를 동시에 제공할 수 있는 정보 시스템을 구축하여 활용도가 높은 농업 기상 서비스 시스템이 구축되어야 할 것이다. 이와 함께, 농업인 뿐만 아니라 소비자까지도 고려된 모바일 어플리케이션의 설계 및 개발을 통해, 4차 산업혁명의 주요 기술들이 농업 분야에서 확산될 수 있도록 지속적인 노력이 필요하다. 이러한 정보 시스템은 농업 분야 이해당사자에게 수요자 맞춤형 농림기상정보를 제공하여 기후스마트 농업 관련 기술의 개발과 도입을 촉진시킬 수 있을 것이다.
오늘날 스마트폰 기술의 향상과 함께 모바일인스턴트메신저(MIM)는 많은 사람들이 일상적으로 이용하는 커뮤니케이션 수단이 되었다. 그 중 카카오톡은 현재 국내에서 가장 높은 점유율을 차지하고 있으며 카카오게임은 대표적인 SNG 플랫폼으로 지속적인 수익을 창출하고 있다. 그러나 카카오게임의 대중적 인기와 수익창출 기여도가 증가함에도 불구하고, SNG이용자의 특성과 지속적인 게임 이용간의 관계를 다룬 연구는 부족한 실정이다. SNG이용자가 지인들 간의 관계를 통해 형성하는 사회자본과 모바일 게임 이용 시 제공하는 개인정보에 대한 우려는 모두 개인적 특성이며 커뮤니티 몰입도에 영향을 미치는 요인이다. 이에 본 연구는 개인이 타인과 관계를 형성하는 양상과 개인정보제공과 관련된 우려가 게임의 플로우 경험에 미치는 영향을 살펴보고자 하였다. 또한 플로우가 SNG재이용의도와 추천의도에 미치는 영향을 실증 분석하였다. 검증 결과, 응답자의 연결적 사회자본은 SNG에 대한 플로우에 긍정적인 영향을 미쳤으며, 결속적 사회자본은 SNG에 대한 플로우에 부정적인 영향을 미치는 것으로 나타났다. 또한 개인정보제공에 대한 인지성은 SNG에 대한 플로우에 부정적 영향을 미치나, 통제성은 긍정적인 영향을 미치는 것으로 나타났다. 마지막으로 SNG에 대한 플로우는 SNG재이용의도와 추천의도에 긍정적인 영향을 미쳤으며 SNG 재이용의도 또한 추천의도에 긍정적인 영향을 미치는 것으로 나타났다. 본 연구는 SNS의 폐쇄적 특성과 개방형 특성을 모두 갖춘 카카오 플랫폼을 중 카카오게임을 대상으로, SNG이용자의 사회자본이 플로우 경험을 통해 소비자행동에 영향을 미치는 요인이 될 수 있다는 점을 밝혔다. 또한, 아직 연구가 활발하게 진행되지 않은 SNG이용자의 개인정보제공에 대한 우려와 플로우 간의 관계를 실증적으로 검증했다는 점에서 의의가 있다. 마지막으로 본 연구의 결과를 토대로 SNG에 대한 게임몰입을 촉진시키기 위하여 이용자의 특성을 기반으로 보다 유용한 마케팅전략을 고안할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.