• Title/Summary/Keyword: Smart Machine

Search Result 863, Processing Time 0.056 seconds

Neural Networks-Based Method for Electrocardiogram Classification

  • Maksym Kovalchuk;Viktoriia Kharchenko;Andrii Yavorskyi;Igor Bieda;Taras Panchenko
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.186-191
    • /
    • 2023
  • Neural Networks are widely used for huge variety of tasks solution. Machine Learning methods are used also for signal and time series analysis, including electrocardiograms. Contemporary wearable devices, both medical and non-medical type like smart watch, allow to gather the data in real time uninterruptedly. This allows us to transfer these data for analysis or make an analysis on the device, and thus provide preliminary diagnosis, or at least fix some serious deviations. Different methods are being used for this kind of analysis, ranging from medical-oriented using distinctive features of the signal to machine learning and deep learning approaches. Here we will demonstrate a neural network-based approach to this task by building an ensemble of 1D CNN classifiers and a final classifier of selection using logistic regression, random forest or support vector machine, and make the conclusions of the comparison with other approaches.

Application of Different Tools of Artificial Intelligence in Translation Language

  • Mohammad Ahmed Manasrah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.144-150
    • /
    • 2023
  • With progressive advancements in Man-made consciousness (computer based intelligence) and Profound Learning (DL), contributing altogether to Normal Language Handling (NLP), the precision and nature of Machine Interpretation (MT) has worked on complex. There is a discussion, but that its no time like the present the human interpretation became immaterial or excess. All things considered, human flaws are consistently dealt with by its own creations. With the utilization of brain networks in machine interpretation, its been as of late guaranteed that keen frameworks can now decipher at standard with human interpreters. In any case, simulated intelligence is as yet not without any trace of issues related with handling of a language, let be the intricacies and complexities common of interpretation. Then, at that point, comes the innate predispositions while planning smart frameworks. How we plan these frameworks relies upon what our identity is, subsequently setting in a one-sided perspective and social encounters. Given the variety of language designs and societies they address, their taking care of by keen machines, even with profound learning abilities, with human proficiency looks exceptionally far-fetched, at any rate, for the time being.

Identifying the Optimal Machine Learning Algorithm for Breast Cancer Prediction

  • ByungJoo Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.80-88
    • /
    • 2024
  • Breast cancer remains a significant global health burden, necessitating accurate and timely detection for improved patient outcomes. Machine learning techniques have demonstrated remarkable potential in assisting breast cancer diagnosis by learning complex patterns from multi-modal patient data. This study comprehensively evaluates several popular machine learning models, including logistic regression, decision trees, random forests, support vector machines (SVMs), naive Bayes, k-nearest neighbors (KNN), XGBoost, and ensemble methods for breast cancer prediction using the Wisconsin Breast Cancer Dataset (WBCD). Through rigorous benchmarking across metrics like accuracy, precision, recall, F1-score, and area under the ROC curve (AUC), we identify the naive Bayes classifier as the top-performing model, achieving an accuracy of 0.974, F1-score of 0.979, and highest AUC of 0.988. Other strong performers include logistic regression, random forests, and XGBoost, with AUC values exceeding 0.95. Our findings showcase the significant potential of machine learning, particularly the robust naive Bayes algorithm, to provide highly accurate and reliable breast cancer screening from fine needle aspirate (FNA) samples, ultimately enabling earlier intervention and optimized treatment strategies.

A study on the Design and Realization of the Wrist Type Module System based on the Smart Device Receiving Information Relay (스마트 디바이스 착신정보 중계 기반 손목형 모듈 시스템 설계 및 구현)

  • Jeong, Hee Ja
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.131-137
    • /
    • 2016
  • Since the phenomenon that the consumers slip important calls since they do not know the receiving information of the smart phone in spaces which smart phones can not be carried, the development of technology to solve this problem is urgent and the cases of burglary and losses of smart phones during hobby and recreation life are increasing and especially since burglary behaviors are occurring much in places such as bathing resort, swimming pool, Korean dry sauna, sauna and spa etc, the schemes to protect smart phones during hobbies and recreation life is needed. Since the smart watch, the conventional wearable device are high price machines and due to the burden about A/S costs for the damage or failure of the machine during exercise, hobbies and recreation activities, the burden about the use is high, development of products which can reduce such burden and emphasize the usefulness is urgent and in order to solve this problem, the added value and psychological repercussion effect will be very high in areas of smart phone users and utilizing them by developing the system which can know if the smart phone has received calls at least in places where smart phones can not be carried.

Research Trend on Internet of Things and Smart City Using Keyword Fequency and Centrality Analysis : Focusing on United States, Japan, South Korea (키워드 빈도와 중심성 분석을 이용한 사물인터넷 및 스마트 시티 연구 동향: 미국·일본·한국을 중심으로)

  • Lee, Taekkyeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.3
    • /
    • pp.9-23
    • /
    • 2022
  • This study aims to examine research trends on the Internet of Things and smart city based on papers from the United States, Japan, and Korea. We collected 7113 papers related to the Internet of Things and smart city published from 2016 to 2021 in Elsevier's Scopus. Keyword frequency and centrality analysis were performed based on the abstracts of the collected papers. We found keywords with high frequency of appearance by calculating keyword frequency and identified central research keywords through the centrality analysis by country. As a result of the analysis, research on security, machine learning, and edge computing related to the Internet of Things and smart city were the most central and highly mediating research conducted in each country. As an implication, studies related to deep learning, cybersecurity, and edge computing in Korea have lower degree centrality and betweenness centrality compared to the United States and Japan. To solve the problem it is necessary to combine these studies with various fields. The future research direction is to analyze research trends on the Internet of Things and smart city in various regions such as Europe and China.

Design and Implementation of Rowing Machine System using VR Contents (VR 콘텐츠를 응용한 로잉머신 시스템의 설계 및 구현)

  • Ban, Hyun-Jin;Yun, Da-young;Kim, Jae-rim;Baek, Se-yeon;Lee, Na-young;Chang, Young-hyun;Kim, Jung-min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.91-94
    • /
    • 2020
  • 본 연구에서는 4차 산업혁명의 핵심 분야인 가상현실을 헬스 엔터테인먼트 서비스에 응용하는 시스템을 개발하였다. 스마트폰에 내장된 GPS와 GYRO센서를 활용하여 로잉머신의 동작 상태를 이중 데이터로 측정하고, 분석한 값을 활용해서 Unity를 사용하여 AR 어플리케이션을 설계, 구현하였다. 어플리케이션을 AR 글라스를 통해 실행한 결과, 생동감 넘치는 운동 환경을 사용자에게 제공한다. 그러나 사용자의 시각적 부담 과다로 인하여 로잉머신 운동효과 경험에 부분적 장애를 유발할 수 있어 2차적 개선으로 VR 콘텐츠로 전환을 적용하여 안전한 운동효과를 검증하였다. 본 연구의 VR 콘텐츠 개선기술을 적용하면 사용자 안전에 우선하는 헬스 엔터테인먼트 시장의 활성화가 기대된다.

Application Verification of AI&Thermal Imaging-Based Concrete Crack Depth Evaluation Technique through Mock-up Test (Mock-up Test를 통한 AI 및 열화상 기반 콘크리트 균열 깊이 평가 기법의 적용성 검증)

  • Jeong, Sang-Gi;Jang, Arum;Park, Jinhan;Kang, Chang-hoon;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.95-103
    • /
    • 2023
  • With the increasing number of aging buildings across Korea, emerging maintenance technologies have surged. One such technology is the non-contact detection of concrete cracks via thermal images. This study aims to develop a technique that can accurately predict the depth of a crack by analyzing the temperature difference between the crack part and the normal part in the thermal image of the concrete. The research obtained temperature data through thermal imaging experiments and constructed a big data set including outdoor variables such as air temperature, illumination, and humidity that can influence temperature differences. Based on the collected data, the team designed an algorithm for learning and predicting the crack depth using machine learning. Initially, standardized crack specimens were used in experiments, and the big data was updated by specimens similar to actual cracks. Finally, a crack depth prediction technology was implemented using five regression analysis algorithms for approximately 24,000 data points. To confirm the practicality of the development technique, crack simulators with various shapes were added to the study.

AI-based smart water environment management service platform development (AI기반 스마트 수질환경관리 서비스 플랫폼 개발)

  • Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.56-63
    • /
    • 2022
  • Recently, the frequency and range of algae occurrence in major rivers and lakes are increasing due to the increase in water temperature due to climate change, the inflow of excessive nutrients, and changes in the river environment. Abnormal algae include green algae and red algae. Green algae is a phenomenon in which blue-green algae such as chlorophyll (Chl-a) in the water grow excessively and the color of the water changes to dark green. In this study, a 3D virtual world of digital twin was built to monitor and control water quality information measured in ecological rivers and lakes in the living environment in real time from a remote location, and a sensor measuring device for water quality information based on the Internet of Things (IOT) sensor. We propose to build a smart water environment service platform that can provide algae warning and water quality forecasting by predicting the causes and spread patterns of water pollution such as algae based on AI machine learning-based collected data analysis.

Effect of Loading Rate on Self-stress Sensing Capacity of the Smart UHPC (하중 속도가 Smart UHPC의 자가 응력 감지 성능에 미치는 영향)

  • Lee, Seon Yeol;Kim, Min Kyoung;Kim, Dong Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.

Stress Identification and Analysis using Observed Heart Beat Data from Smart HRM Sensor Device

  • Pramanta, SPL Aditya;Kim, Myonghee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1395-1405
    • /
    • 2017
  • In this paper, we analyses heart beat data to identify subjects stress state (binary) using heart rate variability (HRV) features extracted from heart beat data of the subjects and implement supervised machine learning techniques to create the mental stress classifier. There are four steps need to be done: data acquisition, data processing (HRV analysis), features selection, and machine learning, before doing performance measurement. There are 56 features generated from the HRV Analysis module with several of them are selected (using own algorithm) after computing the Pearson Correlation Matrix (p-values). The results of the list of selected features compared with all features data are compared by its model error after training using several machine learning techniques: support vector machine, decision tree, and discriminant analysis. SVM model and decision tree model with using selected features shows close results compared to using all recording by only 1% difference. Meanwhile, the discriminant analysis differs about 5%. All the machine learning method used in this works have 90% maximum average accuracy.