• Title/Summary/Keyword: Smart Inverter

Search Result 61, Processing Time 0.026 seconds

Design of a Latchup-Free ESD Power Clamp for Smart Power ICs

  • Park, Jae-Young;Kim, Dong-Jun;Park, Sang-Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.227-231
    • /
    • 2008
  • A latchup-free design based on the lateral diffused MOS (LDMOS) adopting the "Darlington" approaches was designed. The use of Darlington configuration as the trigger circuit results in the reduction of the size of the circuit when compared to the conventional inverter driven RC-triggered MOSFET ESD power clamp circuits. The proposed clamp was fabricated using a $0.35{\mu}m$ 60V BCD (Bipolar CMOS DMOS) process and the performance of the proposed clamp was successfully verified by TLP (Transmission Line Pulsing) measurements.

Analysis and Performance Test of Hybrid Transformer used in the Grid-Connected Photovoltaic Generation System (태양광 계통연계형 하이브리드 변압기의 해석 및 성능시험)

  • Kim, Ji-Ho;Park, Hoon-Yang;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.333-338
    • /
    • 2014
  • This paper concerns the development of the transformer that can reduce harmonics supplied to the system if the output of photovoltaic inverter in the photovoltaic system is grid-connected, and suggests that problems of harmonics and power factor degradation in the grid-connected photovoltaic system can be improved. In this study, the burden of increasing the investment in new facilities and securing their installation space due to harmonics has been substantially eased through the development of a hybrid transformer possessing unbalanced function and harmonics reduction function using zig-zag coils, and most of all, it is expected that the development of such high efficiency hybrid transformer possessing functions of transformation and reducing harmonics can improve the power quality as well as prevent damages caused by harmonics, leading to suppress unnecessary loss of electric power and thereby contribute to energy savings.

A Study on Capacitance Selection Method of DC-link Capacitor Using Current Ripple (전류 리플을 이용한 직류단 캐패시터의 용량 선정 기법에 관한 연구)

  • Kim, Yong-Hyu;Lee, Byung-Hoon;Hwang, Seon-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.47-53
    • /
    • 2022
  • This paper proposes a method for selecting the capacitance of DC-link capacitors of inverters. In general, the DC-link capacitance of the inverter system must be considered for DC-link voltage, ripple current, switching frequency, ripple voltage, and pulse-width modulation techniques. Therefore, the appropriate capacitance can be determined by finding the rms and peak values of the ripple current of the capacitor. In this paper, the process of extracting the ripple current of DC-link capacitor is described in detail. In addition, the simple method for finding DC-link capacitor capacitance using the result value is presented through the simulations.

Grid Voltage and Frequency Control Algorithm using Smart Inverter (스마트 인버터를 이용한 계통 전압 및 주파수 제어 알고리즘)

  • Park, Hwa-Pyeong;Chae, Suyong;Kang, Moses;Bae, Kuk-Yeol;Baek, Jongbok
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.338-339
    • /
    • 2020
  • 화력 발전에 의한 전력 생산은 환경오염으로 이어지고 이를 극복하기 위해 태양광 발전 혹은 풍력발전과 같은 신재생에너지원을 이용한 전력 생산이 꾸준히 증가하고 있다. 하지만 신재생에너지는 불규칙적인 전력을 생산할 뿐만 아니라 전력 계통의 도선 및 부하의 임피던스에 의해 계통의 전압 및 주파수가 변동한다. 이러한 문제를 극복하기 위해 계통 연계형 스마트 인버터를 사용하여 신재생에너지를 사용함과 동시에 계통의 안전성을 높일 수 있다. 본 논문은 ESS를 사용한 계통 연계형 스마트 인버터의 Voltage-Watt, Voltage-Var 제어 및 Frequency-Watt 제어를 통해 신재생에너지에 의해 발생하는 계통의 문제를 해결하는 제어 알고리즘을 제안한다.

  • PDF

Power analysis of electric transplanter by planting distances

  • Lee, Pa-Ul;So, Jin-Hwan;Nam, Yo-Sang;Choi, Chang-Hyun;Noh, Hyun-Seok;Shim, Jong-Yeal;Hong, Soon-Jung
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.290-297
    • /
    • 2018
  • Electric drive technology is continually advanced to improve fuel efficiency in the automobile industry. It could improve the fuel efficiency of automobiles by 50% as well as agricultural machinery. The purpose of this study was to measure and analyze the power and current of an electric transplanter based on the planting distances during field operations. The electric transplanter was constructed by mounting the major components of a motor drive system onto a transplanter. The electric transplanter had a 3 kW motor power, and the major components included an inverter, battery, and a battery management system (BMS). The field tests were conducted by travelling at two speeds (300 and 760 mm/s) and by planting at three distances (260, 420 and 630 mm) with the working speed (300 mm/s), during travelling and transplanting. The results showed that the required power increased when the travelling speed was fast. One-way ANOVA for the planting distance and Duncan's multiple range test at a significance level of 0.05 were used to analyze the motor power using statistical analysis software. In addition, the required power increased when the planting distances were short at every working condition. The results of this study would provide useful information for the development an electric transplanter.

Multi-Level Inverter Circuit Analysis and Weight Reduction Analysis to Stratospheric Drones (성층권 드론에 적용할 멀티레벨 인버터 회로 분석 및 경량화 분석)

  • Kwang-Bok Hwang;Hee-Mun Park;Hyang-Sig Jun;Jung-Hwan Lee;Jin-Hyun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.953-965
    • /
    • 2023
  • The stratospheric drones are developed to perform missions such as weather observation, communication relay, surveillance, and reconnaissance at 18km to 20km, where climate change is minimal and there is no worry about a collision with aircraft. It uses solar panels for daytime flights and energy stored in batteries for night flights, providing many advantages over existing satellites. The electrical and power systems essential for stratospheric drone flight must ensure reliability, efficiency, and lightness by selecting the optimal circuit topology. Therefore, it is necessary to analyze the circuit topology of various types of multi-level inverters with high redundancy that can ensure the reliability and efficiency of the motor driving power required for stable long-term flight of stratospheric drones. By quantifying the switch element voltage drop and the number and weight of inverter components for each topology, we evaluate efficiency and lightness and propose the most suitable circuit topology for stratospheric drones.

Modbus TCP based Solar Power Plant Monitoring System using Raspberry Pi (라즈베리파이를 이용한 Modbus TCP 기반 태양광 발전소 모니터링 시스템)

  • Park, Jin-Hwan;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.620-626
    • /
    • 2020
  • This research propose and simulate a solar power generation system monitoring system based on Modbus TCP communication using RaspberryPi, an IOT equipment, as a master and an inverter as a slave. In this model, various sensors are added to the RaspberryPi to add necessary information for monitoring solar power plants, and power generation prediction and monitoring information are transmitted to the smart phone through real-time power generation prediction. In addition, information that is continuously generated by the solar power plant is built on the server as big data, and a deep learning model for predicting power generation is trained and updated. As a result of the study, stable communication was possible based on Modbus TCP with the Raspberry Pi in the inverter, and real-time prediction was possible with the deep learning model learned in the Raspberry Pi. The server was able to train various deep learning models with big data, and it was confirmed that LSTM showed the best error with a learning error of 0.0069, a test error of 0.0075, and an RMSE of 0.0866. This model suggested that it is possible to implement a real-time monitoring system that is simpler, more convenient, and can predict the amount of power generation for inverters of various manufacturers.

The grid-connected bidirectional PCS technology of the ESS (에너지 저장장치의 계통 연계형 양방향 PCS 기술)

  • Ko, Bong-Woon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1280-1287
    • /
    • 2019
  • Grid-connected bidirectional PCS(Power Conditioning System) technology is a technology for implementing distributed renewable energy smart grid. And it is always charged by using power collected from solar modules and commercial grid power among vast smart grid systems, and stored when needed.It is a hybrid energy storage device that allows power to be released into the low voltage system. To this end, a PV input power converter with MPPT function, a bidirectional power converter for battery charging and discharging, and a DC Link input are output to a 3 phase 380V AC system, and if nessary, the bidirectional DC/DC converter We designed and developed a PCS with three power converter structures composed of inverters that perform battery charging. Currently, this system is applied to the site of Jeju, which is vulnerable to power outages and fire accidents.

The Novel Configuration of Integrated Network for Building Energy System (빌딩 에너지시스템 통합네트워크 구축에 관한 연구)

  • Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.229-234
    • /
    • 2008
  • The new millennium has started with several innovations driven by fast evolution of the technologies in energy sector. A strong impulse towards the diffusion of new economical efficient technologies regulatory incentives related to energy production from renewable source and a small scale building trigeneration and to promotion of more sustainable environmental-friendly generation solutions, the evolution of electricity markets, more and more binding local emission constraints, and the need for improving the security of supply to reduce the energy system vulnerability. The 24 percentage energy quantify of total energy consumption consumes in commercial buildings and residential houses and the 30% portion of total $CO_2$ emissions covers also in the commercial buildings and residential houses sector. To cope with efficiently this energy sinuation in building sector, Building microgrid or building tooling, heating & power(BCHP) system has been interested in recent day due to meeting thermal and electric energy requirements efficiently and with appropriate energy quality. A multi agent system is a collective of intelligent agents that communicate with each other and work cooperatively to achieve common goals. Also, it is to medicate and coordinate communication between Control Areas and Security Coordinators for teal-time control of the BCHP system and the power pid. In this new circumstance, it is very important to integrate the power and energy delivery system and the information system(communication, networks, and intelligent equipment) that controls it. Therefore, development of smart control modules with open communication protocol and seamlessly interchange the data and information between control network and data network including extranet and intranet give a great meanings. We designed and developed the TCP/IP-CAN IED agent modules and ModBus./LonTalk/(TCP/IP) IED agent ones to configure the multi-agent system based smart energy network of commercial buildings and also intelligent algorithms for inverter fault diagnostics which ran be operated in control level or agent level network.

  • PDF

Development of Smart PCS(Power Conditioning System) Integrating PV/ESS for Home (가정용 태양광/ESS 통합 스마트 PCS 개발)

  • Lee, Sang-Hak
    • Journal of Digital Convergence
    • /
    • v.14 no.7
    • /
    • pp.193-200
    • /
    • 2016
  • Research and development of energy self-consumption introducing photovoltaic and energy storage system at home is very active. This system can manage the home energy in which it charges the electricity generated during the day and uses it during high electricity bills. However, it not yet made up the residential real-time pricing in Korea but it can reduce electricity usage to a certain target on the progressive. In order to introduce the home photovoltaic, it requires PCS(Power Conditioning System). This converts the direct current into alternating current by the electricity generated and used to perform charging and discharging of the energy storage system. The market for self-consumption smart home system is currently increasing because the interests of the general public about solar power, energy storage systems increased. The result of this study is installed on the room environment and the effect was analyzed on the assumption of real-time pricing.