• Title/Summary/Keyword: Smart Industrial Technology

Search Result 1,089, Processing Time 0.03 seconds

Analysis of Factors Affecting Company Performance by Smart Factory (스마트공장 보급이 중소기업 경영에 미치는 영향 요인 분석)

  • Kim, Jinhan;Cho, Jinhyung;Lee, Saejae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.76-83
    • /
    • 2019
  • The South Korean government is actively assisting the supply of the smart factory solutions to SMEs (Small & Medium-sized Enterprises) according to its manufacturing innovation 3.0 policy for the smart manufacturing as the 4th industrial revolution era unfolds. This study analyzed the impacts of the smart factory solutions, which have been supplied by the government, on the companies performances. The effects of the level of smart factory and the operation capabilities for the smart factory solutions on company performances, and the mediating effects of manufacturing capabilities have been analyzed using SPSS and AMOS. The data for this survey-based study were collected from the SMEs which implemented the smart factory solutions since 2015. The results show that the level of smart factory solutions adopted and operation capabilities for the smart factories do not have direct effects on the company performances, but their mediating effects on the manufacturing capabilities matter and the manufacturing capabilities effect directly on the company performances. In addition significant factors boosting the operation capability for the smart factory and the levels of the smart factory solutions are identified. Finally, the policy direction for enhancing the smart factory effects is presented, and the future research directions along with the limitations are suggested.

Smart Factory as a Set of Essential Technologies of 4th Industrial Revolution (4차 산업혁명 요소기술 집합체로써의 스마트팩토리)

  • Seo, Dayoon;Bae, Sung Min
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.2
    • /
    • pp.21-23
    • /
    • 2017
  • Smart Factories could be regarded as a result of the integration of various key technologies of the fourth industrial revolutions. In smart factory, the IoT (Internet of things) is applied to capture the data generated by the production facility, store and analyze data generated in real time using Big Data technology. In addition, 3D printers are used to print expensive and complex parts, industrial robots supply materials and parts to the production site, store finished products in warehouses. In this paper, we introduced the definition of smart factory and change of job market. Also, we summarize several national policies to support enhancing transformation process of smart factory.

Evaluation of Smart Lighting User Experience in Smart Safety Living Lab (스마트안전 리빙랩에서의 스마트 조명 사용자경험 평가)

  • Jo, Eun-Ji;Ryu, Do-Hyeon;Kim, Kwang-Jae;Lee, Gi-Hyun;Yun, Jung-Min;Cho, Jung-Hyun;Jeon, Kwang-sik;Lee, Ji-Yeon
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.679-700
    • /
    • 2022
  • Purpose: Smart lighting adjusts brightness and color temperature according to weather, the user's activity, mood, etc. This study performed user experience(UX) evaluation of smart lighting in a living lab. The purpose of evaluating UX and analyzing the evaluation results is to improve user-friendliness and market competitiveness of smart lighting Methods: A living lab is a virtual or physical space where various stakeholders participate to develop, verify, and evaluate products, services, or systems in a real-life environment. In this study, an environment of using smart lighting was established in the Smart Safety Living Lab. Subjects performed UX evaluation after interacting freely with smart lighting in the Smart Safety Living Lab. Results: As a result of UX evaluation, it was confirmed that UX was overall excellent and subjects were satisfied with setting a desired indoor mood through smart lighting. However, operating the switch of smart lighting may be difficult due to its complexity, and it is needed to improve some functionalities such as the brightness range provided by smart lighting. Conclusion: This study is expected to contribute to establishing the way of UX improvement of smart lighting. This study is also expected to contribute to developing smart lighting as a high-quality product by reflecting the subjects' needs and UX derived in a real-life environment.

Fabrication of Perforated Strings for Transparent Silicon Shingled Photovoltaic Modules (투광형 실리콘 슁글드 태양광 모듈을 위한 타공형 스트링 제작)

  • Kim, Han Jun;Park, Min-Joon;Song, Jinho;Jeong, Taewung;Moon, Daehan;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.120-123
    • /
    • 2020
  • Transparent photovoltaics (PV) are used in various applications such as building-integrated photovoltaics (BIPV). However, crystalline silicon (c-Si) is not used for developing transparent PV due to its opaque nature. Here. we fabficate the three holes in 6-inch c-Si solar cells using laser scribing process with an opening area ratio of about 6.8% for transparent c-Si solar modules. Moreover, we make the shingled strings using the perforated cells. Our 7 interconnected shingled string PV cells with 21 holes show a solar to power conversion of 5.721 W. In next work, we will fabricate a transparent c-Si PV module with perforated strings.

Development of a User Experience Evaluation Methodology for Smart Safety Living Lab (스마트안전 리빙랩 환경에서의 사용자경험 평가를 위한 방법론 개발)

  • Choi, Jae-Rim;Ryu, Do-Hyeon;Kim, Kwang-Jae;Yun, Jung-Min;Kim, Min-Sun
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.2
    • /
    • pp.127-143
    • /
    • 2021
  • Purpose: Smart Safety Living Lab is a Living Lab facility, constructed and operated by KITECH in Korea, to support the user experience(UX) evaluation, planning and certification of smart safety products and services. The purpose of this study is to develop a UX evaluation methodology that accommodates the characteristics of the Living Lab and smart safety products and services for a systematic and efficient UX evaluation in the Smart Safety Living Lab. Methods: A generic model of UX evaluation was first derived based on a review of related literature. Then, the generic model is revised to accommodate the characteristics of the Smart Safety Living Lab and smart safety products and services, resulting in the UX Evaluation Methodology for Smart Safety Living Lab (SSLL-UXEM). Results: The developed SSLL-UXEM consists of a structured process for UX evaluation, a guideline for conducting each step of the process, and a set of forms for recording the major evaluation results in each step. Conclusion: SSLL-UXEM can help to enhance the efficiency of the UX evaluation process and the consistency of the UX evaluation results. SSLL-UXEM is also expected to serve as a basis for UX evaluation in various living lab environments in the future.

Development of Multi-layer Pressure Sensor using PEDOT Vapor Phase Polymerization (PEDOT 기상중합 원단을 이용한 멀티 레이어 압력 센서 개발)

  • Lim, Seung Ju;Bae, Jong Hyuk;Jang, Seong Jin;Lim, Jee Young;Park, Keun Hae;Ko, Jae Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.186-191
    • /
    • 2018
  • Smart textile industries have been precipitously developed and extended to electronic textiles and wearable devices in recent years. In particular, owing to an increasingly aging society, the elderly healthcare field has been highlighted in the smart device industries, and pressure sensors can be utilized in various elderly healthcare products such as flooring, mattress, and vital-sign measuring devices. Furthermore, elderly healthcare products need to be more lightweight and flexible. To fulfill those needs, textile-based pressure sensors is considered to be an attractive solution. In this research, to apply a textile to the second layer using a pressure sensing device, a novel type of conductive textile was fabricated using vapor phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Vapor phase polymerization is suitable for preparing the conductive textile because the reaction can be controlled simply under various conditions and does not need high-temperature processing. The morphology of the obtained PEDOT-conductive textile was observed through the Field Emission Scanning Electron Microscope (FESEM). Moreover, the resistance was measured using an ohmmeter and was confirmed to be adjustable to various resistance ranges depending on the concentration of the oxidant solution and polymerization conditions. A 3-layer 81-point multi-pressure sensor was fabricated using the PEDOT-conductive textile prepared herein. A 3D-viewer program was developed to evaluate the sensitivity and multi-pressure recognition of the textile-based multi-pressure sensor. Finally, we confirmed the possibility that PEDOT-conductive textiles could be utilized by pressure sensors.

Object Recognition using Smart Tag and Stereo Vision System on Pan-Tilt Mechanism

  • Kim, Jin-Young;Im, Chang-Jun;Lee, Sang-Won;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2379-2384
    • /
    • 2005
  • We propose a novel method for object recognition using the smart tag system with a stereo vision on a pan-tilt mechanism. We developed a smart tag which included IRED device. The smart tag is attached onto the object. We also developed a stereo vision system which pans and tilts for the object image to be the centered on each whole image view. A Stereo vision system on the pan-tilt mechanism can map the position of IRED to the robot coordinate system by using pan-tilt angles. And then, to map the size and pose of the object for the robot to coordinate the system, we used a simple model-based vision algorithm. To increase the possibility of tag-based object recognition, we implemented our approach by using as easy and simple techniques as possible.

  • PDF

A Study on the Technology Utilization for Smart Education in the 4th Industrial Revolution Era

  • Han, Oakyoung;Kim, Jaehyoun
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.71-82
    • /
    • 2018
  • As the era of the $4^{th}$ industrial revolution began, it is possible to provide smart education by utilizing various new technologies. This paper included 6 steps to prove that the educational satisfaction of students' can be improved by applying the technology of the $4^{th}$ Industrial Revolution toward smart education. The first step is to review technologies of the $4^{th}$ industrial revolution that could enable smart education. The second step is to define areas that smart education should include by adopting technologies of the $4^{th}$ industrial revolution. The third step is to extract the keyword through literature review while the keyword can constitute the smart education for the defined areas. The fourth step is to present the research model by using the extracted keyword. The fifth step is to verify the proposed research model through questionnaires. The last step is to analyze the result of questionnaires to suggest better educational method. Consequentially, the purpose of this study is to verify the effectiveness of smart education by measuring students' expectation about smart education through questionnaire. As a result, students responded that the presented factors of smart education could maximize the effect of education by increasing the satisfaction of education. Therefore, it is necessary to utilize the technology of the $4^{th}$ Industrial revolution in the education field and apply the smart education method for better education.

A Study on the Technological Priorities of Manufacturing and Service Companies for Response to the 4th Industrial Revolution and Transformation into a Smart Company (4차 산업혁명 대응과 스마트 기업으로의 변화를 위한 제조 및 서비스 기업의 기술적용 우선순위에 대한 연구)

  • Park, Chan-Kwon;Seo, Yeong-Bok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.4
    • /
    • pp.83-101
    • /
    • 2021
  • This study is to investigate, using AHP, what technologies should be applied first to Korean SMEs in order to respond to the 4th industrial revolution and change to a smart enterprise. To this end, technologies related to the 4th industrial revolution and smart factory are synthesized, and the classification criteria of Dae-Hoon Kim et al. (2019) are applied, but additional opinions of experts are collected and related technologies are converted to artificial intelligence (AI), Big Data, and Cloud Computing. As a base technology, mobile, Internet of Things (IoT), block chain as hyper-connected technology, unmanned transportation (autonomous driving), robot, 3D printing, drone as a convergence technology, smart manufacturing and logistics, smart healthcare, smart transportation and smart finance were classified as smart industrial technologies. As a result of confirming the priorities for technical use by AHP analysis and calculating the total weight, manufacturing companies have a high ranking in mobile, artificial intelligence (AI), big data, and robots, while service companies are in big data and robots, artificial intelligence (AI), and smart healthcare are ranked high, and in all companies, it is in the order of big data, artificial intelligence (AI), robot, and mobile. Through this study, it was clearly identified which technologies should be applied first in order to respond to the 4th industrial revolution and change to a smart company.

Study on Improvement of Surface Properties of Low Carbon Steel Using Laser Cladding

  • Cheol-Woo Kim;Hyo-Sang Yoo;Jae-Yeol Jeon;Kyun-Taek Cho;Se-Weon Choi
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.4
    • /
    • pp.1033-1036
    • /
    • 2021
  • Laser cladding is a method that can be applied to repair the crack and break on the mold and die surfaces, as well as generate new attributes on the surface to improve toughness, hardness, and corrosion resistance. It is used to extend the life of the mold. It also has the advantages of superior bonding strength and precision coating on a local area compared with the conventional thermal spraying technology. In this study, we investigated the effect of cladding on low carbon alloy steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), which showed high hardness on the die surface. The process conditions were performed in an argon atmosphere using a diode laser source specialized for 900-1070 nm, and the output conditions were 5, 6, and 10 kW, respectively. After the cladding was completed, the surface coating layer's shape, the hardness according to the cross-section's thickness, and the microstructure were analyzed.