• Title/Summary/Keyword: Smart Growth

Search Result 844, Processing Time 0.028 seconds

Modulation of Microstructure and Energy Storage Performance in (K,Na)NbO3-Bi(Ni,Ta)O3 Ceramics through Zn Doping (Zn 도핑을 통한 (K,Na)NbO3-Bi(Ni,Ta)O3 세라믹의 미세구조 및 에너지 저장 물성 제어)

  • Jueun Kim;Seonhwa Park;Yuho Min
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.509-515
    • /
    • 2023
  • Lead-free perovskite ceramics, which have excellent energy storage capabilities, are attracting attention owing to their high power density and rapid charge-discharge speed. Given that the energy-storage properties of perovskite ceramic capacitors are significantly improved by doping with various elements, modifying their chemical compositions is a fundamental strategy. This study investigated the effect of Zn doping on the microstructure and energy storage performance of potassium sodium niobate (KNN)-based ceramics. Two types of powders and their corresponding ceramics with compositions of (1-x)(K,Na)NbO3-xBi(Ni2/3Ta1/3)O3 (KNN-BNT) and (1-x)(K,Na)NbO3-xBi(Ni1/3Zn1/3Ta1/3)O3 (KNN-BNZT) were prepared via solid-state reactions. The results indicate that Zn doping retards grain growth, resulting in smaller grain sizes in Zn-doped KNN-BNZT than in KNN-BNT ceramics. Moreover, the Zn-doped KNN-BNZT ceramics exhibited superior energy storage density and efficiency across all x values. Notably, 0.9KNN-0.1BNZT ceramics demonstrate an energy storage density and efficiency of 0.24 J/cm3 and 96%, respectively. These ceramics also exhibited excellent temperature and frequency stability. This study provides valuable insights into the design of KNN-based ceramic capacitors with enhanced energy storage capabilities through doping strategies.

Analysis of Growth and Flowering of Thymus quinquecostatus Using Smart Farming System (스마트 재배시스템을 활용한 백리향 생장 및 개화 분석)

  • Mi Hee Kim;Ui-Lim Choi;Hyeonbin Kim;Kwang Sang Kim;Min Sook Kim;Min Ji Kim;Seung Il Jeong;Gun Woong Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.84-84
    • /
    • 2022
  • 백리향(Thymus quinquecostatus)은 꿀풀과의 낙엽반관목으로 국내에서 자생하는 허브 식물 중 하나이다. 백리향은 특유의 좋은 향기 및 항산화, 항염증, 항균, 미백 등의 효능을 가지는 각종 폴리페놀 성분을 함유하고 있어 의약품이나 기능성 식품, 화장품의 천연 소재 원료로 활용되고 있다. 국내에서 백리향은 재배 환경에 맞추어 주로 고산지대의 노지에서 재배되고 있다. 노지 재배는 지역, 시기, 기후 등의 외부환경에 영향을 받아서 백리향의 유효성분, 품질 및 생산성을 안정적으로 유지하기 어렵다는 한계를 가지고 있다. 따라서 본 연구에서는 스마트팜 시스템을 활용하여 백리향의 유효 성분 등을 안정적으로 얻기 위한 생장조건을 탐색하기 위해 4종의 Light Emitting Diode(LED) 광원과 4종의 토양 조성에 따라서 백리향의 생육조건을 수행하였다. LED는 white, purple, RGB1, RGB2를 사용하였으며, 토양은 상토:펄라이트 비율(상토, 5:1, 3:1, 1:1)로 조성하여 백리향 묘목을 이식한 뒤 생장과 개화시기를 분석하였다. 재배환경은 백리향 재배지의 기상 데이터를 참고하여 동일하게 설정하였으며, 총 8주 동안 생육상태를 관찰하였다. 연구 결과 백리향 재배 4주차에 일부 개체에서 봉오리가 올라오며 개화를 시작하였으며, 8주차에는 대부분의 조건에서 개화를 관찰할 수 있었다. 백리향의 지상부 면적을 비교한 결과 가장 우수한 생장을 보이는 조건은 토양은 3(상토):1(펄라이트) 비율로 분석되었다. 따라서 이번 연구 결과를 바탕으로 백리향 재배에 스마트팜 농업 기술을 활용한다면 기존 노지 재배 한계를 보완하여 안정적이고 지속적인 백리향을 생산할 수 있을것으로 기대된다.

  • PDF

Extending Raw Pacific Oyster Crassostrea gigas Shelf-life by Addition of the Natural Food Additives (천연 추출물 첨가에 의한 생굴(Crassostrea gigas)의 식품학적 품질 유지)

  • DoKyung Oh;Do-Ha Lee;Du-Min Jo;Kyung-Jin Cho;Seul-Ki Park;Yeon-Ju Sim;Jeong-Bin Jo;Jae-Ho Woon;Young-Mog Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.810-817
    • /
    • 2023
  • Oysters are a highly consumed seafood throughout Korea, but they have a short shelf life because they support rapid microbial growth due to their of high moisture content and fragile muscle tissue. We examined natural food additives including lactic acid bacteria fermentation powder, rosemary extract, and lemon juice for their ability to preserve raw oyster Crassostrea gigas quality. Samples were stored at 4℃, and microbiological and physicochemical analyses were conducted. Among the natural additives tested, lemon juice was the most effective. Lemon juice was thus applied at different concentrations (50-300 ppm) to quantitatively assess its effect on total viable cell count, pH, glycogen, soluble protein, and turbidity. 200 ppm was confirmed to be optimal, and is projected to extend shelf life by 2 days compared to the control group.

pH-Controlled Synthesis of Carbon Xerogels for Coin-Type Organic Supercapacitor Electrodes (pH를 조절하여 제조한 카본제어로젤을 이용한 코인타입 유기계 슈퍼커패시터 전극)

  • Ji Chul Jung;Wonjong Jung
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.430-438
    • /
    • 2023
  • In this study, we synthesized pH-controlled resorcinol-formaldehyde (RF) gels through the polymerization of two starting materials: resorcinol and formaldehyde. The prepared RF gels were dried using an acetone substitution method, and they were subsequently carbonized under nitrogen atmosphere to obtain carbon xerogels (CX_Y) prepared at different pH (Y). The carbon xerogels were utilized as active materials for coin-type organic supercapacitor electrodes to investigate the influence of pH on the electrochemical properties of the carbon xerogels. The carbon xerogels prepared at lower pH (CX_9.5 and CX_10) exhibited sufficient particle growth, with a three-dimensional network of particles during the RF gel formation, resulting in the development of abundant mesopores. Conversely, the carbon xerogels prepared at higher pH (CX_11 and CX_12) retained densely packed structures of small particles, leading to pore collapse and low specific surface areas. Consequently, CX_9.5 and CX_10 showed high specific surface areas, and provided ample adsorption sites for the formation of electric double layers with electrolyte ions. Moreover, the three-dimensional particle network in CX_9.5 and CX_10 significantly enhanced electrical conductivity. The presence of well-developed mesopores in these materials further facilitated the effective transport of electrolyte ions, contributing to their superior performance as organic supercapacitor electrodes. This study confirmed that pH-controlled carbon xerogels are one of the promising active materials for organic supercapacitor electrodes. Furthermore, we concluded that pH during RF gel formation is a crucial factor determining the electrode performance of the carbon xerogels, highlighting the need for precise pH control to obtain high-performance carbon xerogel electrodes.

Designing Dataset for Artificial Intelligence Learning for Cold Sea Fish Farming

  • Sung-Hyun KIM;Seongtak OH;Sangwon LEE
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.208-216
    • /
    • 2023
  • The purpose of our study is to design datasets for Artificial Intelligence learning for cold sea fish farming. Salmon is considered one of the most popular fish species among men and women of all ages, but most supplies depend on imports. Recently, salmon farming, which is rapidly emerging as a specialized industry in Gangwon-do, has attracted attention. Therefore, in order to successfully develop salmon farming, the need to systematically build data related to salmon and salmon farming and use it to develop aquaculture techniques is raised. Meanwhile, the catch of pollack continues to decrease. Efforts should be made to improve the major factors affecting pollack survival based on data, as well as increasing the discharge volume for resource recovery. To this end, it is necessary to systematically collect and analyze data related to pollack catch and ecology to prepare a sustainable resource management strategy. Image data was obtained using CCTV and underwater cameras to establish an intelligent aquaculture strategy for salmon and pollock, which are considered representative fish species in Gangwon-do. Using these data, we built learning data suitable for AI analysis and prediction. Such data construction can be used to develop models for predicting the growth of salmon and pollack, and to develop algorithms for AI services that can predict water temperature, one of the key variables that determine the survival rate of pollack. This in turn will enable intelligent aquaculture and resource management taking into account the ecological characteristics of fish species. These studies look forward to achievements on an important level for sustainable fisheries and fisheries resource management.

Inhibition of Food-derived Lactic Acid Bacterial Biofilm Formation Using Eisenia bicyclis-derived Nanoparticles (식품 유래 Biofilm 형성 유산균에 대한 대황(Eisenia bicyclis) 유래 Nanoparticle의 Biofilm 형성 저해)

  • Do Kyung Oh;Fazlurrahman Khan;Seul-Ki Park;Du-Min Jo;Kyung-Jin Cho;Geum-Jae Jeong;Yeon-Ju Sim;Jeong Mi Choi;Jae-Ho Woon;Young-Mog Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.2
    • /
    • pp.129-136
    • /
    • 2024
  • Lactic acid bacteria (LAB) growth in processed meat products produces slime. In this study, 10 different biofilm-forming LAB, including Leuconostoc mesenteroides, Lacticaseibacillus paracasei, Levilactobacillus brevis, Lactiplantibacillus plantarum, Leuconostoc citreum, Weissella viridescens, and Latilactobacillus sakei, were isolated from various meat products and identified based on 16S rRNA gene analysis. To inhibit biofilm formation by LABs, Eisenia bicycles methanolic extract (EB) and ethyl acetate soluble fraction (EA) were used as antibacterial and antibiofilm agents, respectively. Furthermore, EA and EB were employed to synthesize gold nanoparticles (AuNPs) such as EB-AuNPs and EA-AuNPs, which could serve as antibiofilm agents against the isolated LAB. These findings demonstrate that EA, EB-AuNPs, and EA-AuNPs exhibit significant antibacterial activity against the isolated LAB. Furthermore, EB-AuNPs reduced L. citreum biofilm production, whereas EA-AuNPs inhibited L. mesenteroides and L. brevis biofilm formation. The current results suggest that EB-AuNPs and EA-AuNPs can be used as nanomaterials to inhibit LAB that form biofilms on meat products.

Study on Personal Information Protection Behavior in Social Network Service Using Health Belief Model (건강신념모델을 이용한 소셜네트워크서비스에서의 개인정보보호행위에 관한 연구)

  • Shin, Se-mi;Kim, Seong-jun;Kwon, Do-soon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.6
    • /
    • pp.1619-1637
    • /
    • 2016
  • With wide distribution of smart phones and development of mobile network, social network service (SNS) is displaying remarkable growth rates. Users build new social relations by sharing their interests, which brings surging growth to the SNS based on the combination between the strength of expanding the place for communication and distribution of smart phones featured with easy portability. This study is designed to understand impact factors of SNS on users in Korea and to conduct empirical research on casual relationship between the factors above and the factors affecting personal information behavior through the privacy protection and self-efficacy. In order to accomplish the objective above, the study presented a research model applied with key variables of the Health Belief Model (HBM) predicting behaviors capable of recognizing and preventing individual diseases in the field of health communication. To perform empirical verification on the research model of this study, a survey was conducted upon college students at N university located in Chungcheongnam-do and K university in rural area, who have experiences using the SNS. Through this survey, a total of 186 samples were collected, and path analysis was performed in order to analyze the relationship between the factors. Based on the findings from the survey, first, variables Perceived probability, Perceived severity, Perceived impairment of the HBM, key factors of personal information protection behavior on the SNS, were found to exhibit negative relationship with self-efficacy, and Perceived probability, Perceived benefit, Perceived impairment were found to exhibit negative relationship with privacy protection. But the above, Perceived severity showed positive relationship with privacy protection, and Perceived benefit and self-efficacy also displayed positive relationship. Second, although self-efficacy, a parameter, showed positive relationship with privacy protection, it demonstrated negative relationship with personal information protection behavior. Lastly, privacy protection exhibited positive relationship with personal information protection behavior. By presenting theoretical model reflected with characteristics of prevention based on these findings above unlike previous studies on personal information protection using technologies threatening personal information, this study is to provide theoretical and operational foundation capable of offering explanations how to predict personal information protection behavior on the SNS in the future.

Studies on the MSM (Methyl Sulfonyl Methane) Treatment Method of Soybeans (콩의 MSM (Methyl Sulfonyl Methane) 처리 방법에 관한 연구)

  • Se Eun Chae;Seung Ka Oh;Young-Son Cho;Doobo Shim;Dong-Kyung Yoon;Seung Ho Jeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.25-33
    • /
    • 2024
  • This experiment was conducted at the affiliated farm of the Suncheon University from 2022 to 2023 to investigate the growth, yield, and quality characteristics of soybeans based on the treatment method of Methyl Sulfony Methane (MSM) for the establishment of stable production practices. In the initial investigation of growth characteristics in 2022, an increasing trend in characteristics such as plant height, stem thickness, and branching index was observed as the treatment concentration increased from 50% to 200%. Yield components also followed the same trend, with the basal fertilization + top dressing 3 times at 200% treatment showing the highest yield at 355 kg·10a-1, with the highest number of pods. In the subsequent study to determine the optimal concentration exceeding 200% in 2023, growth characteristics showed a trend of 400% > 200% > 800%. The basal fertilization + top dressing 3 times at 400% treatment exhibited the longest plant height (106.7 cm) and the most branches (6). In terms of seed quality, this treatment also had the highest proportion (66.9%) of seeds with a diameter over 6.7 mm. Additionally, in yield components such as pods, seeds per pod, and 100-seed weight, the basal fertilization + top dressing 3 times at 400% treatment showed the highest values, resulting in a maximum yield of 374 kg·10a-1, representing a 23.4% increase compared to the control. Therefore, for the optimal production of high-quality soybeans, it is recommended to apply the treatment of basal fertilization + top dressing 3 times at 400% concentration, with top dressing occurring at 30-day intervals before harvest.

Cooperation Strategy in the Business Ecosystem and Its Healthiness: Case of Win - Win Growth of Samsung Electronics and Partnering Companies (기업생태계 상생전략과 기업건강성효과: 삼성전자와 협력업체의 상생경영사례를 중심으로)

  • Sung, Changyong;Kim, Ki-Chan;In, Sungyong
    • The Journal of Small Business Innovation
    • /
    • v.19 no.4
    • /
    • pp.19-39
    • /
    • 2016
  • With increasing adoption of smart products and complexity, companies have shifted their strategies from stand alone and competitive strategies to business ecosystem oriented and cooperative strategies. The win-win growth of business refers to corporate efforts undertaken by companies to pursue the healthiness of business between conglomerates and partnering companies such as suppliers for mutual prosperity and a long-term corporate soundness based on their business ecosystem and cooperative strategies. This study is designed to validate a theoretical proposition that the win-win growth strategy of Samsung Electronics and cooperative efforts among companies can create a healthy business ecosystem, based on results of case studies and surveys. In this study, a level of global market access of small and mid-sized companies is adopted as the key achievement index. The foreign market entry is considered as one of vulnerabilities in the ecosystem of small and mid-sized enterprises (SMEs). For SMEs, the global market access based on the research and development (R&D) has become the critical component in the process of transforming them into global small giants. The results of case studies and surveys are analyzed mainly based on a model of a virtuous cycle of Creativity, Opportunity, Productivity, and Proactivity (the COPP model) that features the characteristics of the healthiness of a business ecosystem. In the COPP model, a virtuous circle of profits made by the first three factors and Proactivity, which is the manifestation of entrepreneurship that proactively invests and reacts to the changing business environment of the future, enhances the healthiness of a given business ecosystem. With the application of the COPP model, this study finds major achievements of the win-win growth of Samsung Electronics as follows. First, Opportunity plays a role as a parameter in the relations of Creativity, Productivity, and creating profits. Namely, as companies export more (with more Opportunity), they are more likely to link their R&D efforts to Productivity and profitability. However, companies that do not export tend to fail to link their R&D investment to profitability. Second, this study finds that companies with huge investment on R&D for the future, which is the result of Proactivity, tend to hold a large number of patents (Creativity). And companies with significant numbers of patents tend to be large exporters as well (Opportunity), and companies with a large amount of exports tend to record high profitability (Productivity and profitability), and thus forms the virtuous cycle of the COPP model. In addition, to access global markets for sustainable growth, SMEs need to build and strengthen their competitiveness. This study concludes that companies with a high level of proactivity to invest for the future can create a virtuous circle of Creativity, Opportunity, Productivity, and Proactivity, thereby providing a strategic implication that SMEs should invest time and resources in forming such a virtuous cycle which is a sure way for the SMEs to grow into global small giants.

  • PDF

Changes in Transpiration Rates and Growth of Cucumber and Tomato Scions and Rootstocks Grown Under Different Light Intensity Conditions in a Closed Transplant Production System (식물공장형육묘시스템 내 광량에 따른 오이와 토마토 접수 및 대목의 증발산량 및 생육 변화)

  • Park, Seon Woo;An, Sewoong;Kwack, Yurina
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Recently, it is difficult to produce uniform scions and rootstocks with high quality in a greenhouse due to weather extremes. The closed transplant production system is useful for producing scions and rootstocks with desirable morphological characteristics by environment control regardless of weather outside. In this study, we investigated transpiration rates and growth of cucumber and tomato scions and rootstocks grown under different light intensity conditions for precise irrigation control in a closed transplant production system. Hanging system to measure continuously the weight of plug tray consisting of seedlings and substrate with load-cell was installed in each growing bed. Using this system, we confirmed initial wilting point of cucumber and tomato seedlings, and conducted subirrigation when moisture content of substrate was not below 50%. The irrigation time of cucumber scions and rootstocks were 7 and 6 days after sowing, respectively. In tomato scions and rootstocks grown under PPF (photosynthetic photon flux) 300 μmol·m-2·s-1, the irrigation time were 5, 8, 11, and 13 days after sowing. Increasing light intensity increased transpiration rates and differences of transpiration rates by light intensity was higher in tomato seedlings. The growth of cucumber and tomato seedlings was promoted by increasing light intensity, especially, hypocotyl elongation and stem thickening was affected by light intensity. Cumulative transpiration rate of plug tray in cucumber and tomato seedlings was increased by increasing light intensity, and daily transpiration rate per seedling was regressed by 1st-order linear equation with high correlation coefficient. Estimation of transpiration rates by weighing continuously plug tray of vegetable seedlings can be useful to control more accurately irrigation schedule in a closed transplant production system.