• Title/Summary/Keyword: Smart Grids

Search Result 79, Processing Time 0.026 seconds

Strategies of Diffusing Smart Grids for Low-carbon Green Growth: Grounded Theory Approach (저탄소 녹색성장을 위한 스마트그리드의 확산전략: 근거이론 접근법)

  • Joo, Jae-Hun;Kim, Lyun-Hwa
    • The Journal of Information Systems
    • /
    • v.22 no.1
    • /
    • pp.225-248
    • /
    • 2013
  • Korean government has been implementing a smart grid testbed in Jeju Island for the low-carbon green growth. As smart grids are in the early stage of their diffusion, strategic guidelines and related measures are needed to spread them successfully. In general, the successful diffusion of new technologies or new products are mostly determined in its early stages. With the introduction of smart grids, the electricity market paradigm will be transformed into user-oriented from provider-oriented. Thus, a study on the diffusion of smart grids from the perspective of users is necessary. This paper examines factors affecting the adoption and diffusion of smart grids from users' perspectives and provide strategic guidelines for diffusing the smart grid. Researchers conducted in-depth interviews with 41 people who have been already using smart grids in the Jeju testbed. Semi-structured interviews were used to collect data. The interviews were recorded on a digital voice recorder memory and subsequently transcribed verbatim. A total of 133 pages of transcripts were obtained from about 10 hours interviews. 97 concepts, 47 sub-categories and 19 categories were identified through open coding of grounded theory. We suggested a paradigm model for diffusing smart grids and total of seven propositions as strategic guidelines.

Real Time Monitoring and Management Method for Electrical Safety of Customer Electrical Installations Connected to Smart Grids (스마트그리드 연계 고객전기설비 전기안전 실시간 감시 및 관리 방안)

  • Jeon, Jeong-Chay;Park, Chan-Eom;Lim, Young-Bae;Bae, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.340-344
    • /
    • 2010
  • In order to achieve purpose of Smart Grids, which is effective use of electrical energy, the safety of electrical installations must be secured. This paper presented real time monitoring and management method for electrical safety of customer electrical installations connected to Smart Grids. And the direction of electrical safety system for the introduction of real time monitoring and management method was suggested. Efficiency improvement of electrical safety management and new supplementary services related with Smart Girds will be available by introducing the presented method.

Analysis of the Impact of Smart Grids on Managing EVs' Electrical Loads (스마트그리드를 통한 전기자동차의 전력망 영향 관리 효과)

  • Park, Chan-Kook;Choi, Do-Young;Kim, Hyun-Jae
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.767-774
    • /
    • 2013
  • The electricity demand and supply could be off balance if several electric vehicles(EVs) were charged at the same time or at peak load times. Therefore, smart grids are necessary to flatten the EVs' electricity demand and to enable EVs to be used as distributed storage devices as electricity demand from EV-charging increases. There are still few quantitative studies on the impact of smart grids on managing EVs' electrical loads. In this study, we analyzed the quantitative impact of smart grids on managing EVs' electrical loads and suggested policy implications. As a result, it is identified that smart grids can manage effectively EVs' impact on electrical grids. The electricity market structure and regulatory framework should support the demonstration and commercialization of smart grid technologies.

Smart Grid-The next Generation Electricity Grid with Power Flow Optimization and High Power Quality

  • Hu, Jiefeng;Zhu, Jianguo;Platt, Glenn
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.425-433
    • /
    • 2012
  • As the demand for electric power increases rapidly and the amount of fossil fuels decreases year by year, making use of renewable resources seem very necessary. However, due to the discontinuous nature of renewable resources and the hierarchical topology of existing grids, power quality and grid stability will deteriorate as more and more distributed generations (DGs) are connected to the grids. It is a good idea to combine local utilization, local consumption, energy storage and DGs to form a grid-friendly micro grid, these micro grids can then assembled into an intelligent power system - the smart Grid. It can optimize power flow and integrate power generation and consumption effectively. Most importantly, the power quality and grid stability can be improved greatly. This paper depicts how the smart grid addresses the current issues of a power system. It also figures out the key technologies and expectations of the smart grid.

An Investigation of the Connectivity between Combined Heat and Power and Smart Grid Technologies (열병합발전과 스마트 그리드 기술과의 연계성 검토)

  • Kim, Won-Gi;Seo, Hun-Cheol;Lee, Je-Won;Kim, Cheol-Hwan;Kim, Yong-Ha;Kim, Ui-Gyeong;Son, Hak-Sik;Kim, Gil-Hwan
    • 전기의세계
    • /
    • v.60 no.11
    • /
    • pp.56-63
    • /
    • 2011
  • In the face of global warming and resource depletion, a smart grid has been suggested as one way of contributing to abating the environment problems and increasing energy efficiency. Smart grids utilize renewable energy which has intermittent and irregular output power depending on weather conditions. In order to maintain stability and reliability of the power system, smart grids need to have complementary measures for the possible unstable system conditions. Cogenerating systems such as Combined Heat and Power(CHP) can be one good solution as it has capability of instantly increasing or decreasing output power. Therefore, this paper investigates the connectivity between Combined Heat and Power systems and smart grid technologies. The smart grid national roadmap formulated by South Korea Ministry of Knowledge and Economy and 'IEC Smart Grid Standardization Roadmap' are analyzed to extract related components of the smart grid for the CHP connection. Also, case studies on demonstration projects for smart grids with CHP systems completed or currently being implementing in the world are presented.

  • PDF

A Study on Power Control using PMS (PMS 시스템을 활용한 전력제어에 관한 연구)

  • Kim, Sung-Cheol;Kim, Kyoung-Wook;Woo, Chun-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.194-198
    • /
    • 2016
  • The electric power industry have recently been building out Smart Grids, a two-way electricity grid that connects power consumers and producers to a network that enables one to respond quickly to any eventuality. The construction of a two-way electricity grid means that the power control process becomes unified, from what used to be separate processes that originate individually from the consumption phase and the production and supply phases. The role of power control that takes place within each section of the power system may be independent. However, this does not mean the independent control sections are operated individually, but are configured to meet a single target and purpose. Each control section possesses enough degree of independency to respond to eventualities that may occur within different stages of the power system, but at the same time, possesses unified system elements for the stability of the entire power system. From this perspective, Smart Grids are widely regarded as the most rational power industry operation plan. A variety of different control and communication systems can be applied for an effective deployment of Smart Grids. Recently, we have seen systems such as PMS(Power Management System) and PAS(Process Automation System) applied in the deployment of Smart Grids, which are developed from the techniques utilized in the industry. The PMS is attracting particular attention for its power operations management ability. In this study, we propose plans for improvement in the rational development of power system controls through case studies of live PMS operations.

A Study on Smart Grid and Cyber Security Strategy (지능형 전력망 도입과 사이버보안 전략)

  • Lee, Sang-Keun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.5
    • /
    • pp.95-108
    • /
    • 2011
  • Smart Grids are intelligent next generating Electric Power System (EPS) that provide environment-friendliness, high-efficiency, and high-trustworthiness by integrating information and communication technology with electric power technology. Smart grids help to supply power more efficiently and safely than past systems by bilaterally exchanging information between the user and power producer. In addition, it alleviates environmental problems by using renewable energy resources. However, smart grids have many cyber security risks because of the bilateral service, the increase of small and medium-sized energy resources, and the installation of multi-sensors or control devices. These cyber risks can cause critical problems within a national grid through even small errors. Therefore, in order to reduce these risks, it is necessary to establish a cyber security strategy and apply it from the developmental stage to the implementation stage. This thesis analyzes and recommends security strategy in order to resolve the security risks. By applying cyber security strategy to a smart grid, it will provide a stepping-stone to creating a safe and dependable smart grid.

A Study on New Data Format of Electrical Shocks in the Environment of Smart Grids (스마트 그리드 환경에서의 전기 감전 재해 자료 형태에 관한 연구)

  • Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.486-491
    • /
    • 2011
  • Since Korea has high accident rate for the electrical shock than other advanced countries, it causes very serious problems. In this paper, a new classification method for analyzing electricity accidents is proposed, which is based on the microscopic view while existing methods have been based at the macroscopic view point. Electrical accidents cases can be mainly divided by three cases, which are from live works, incompleteness of the grounding system and imperfectness of the safety education and public relations. New data format of electrical shocks are proposed in the environment of smart grids.

A Cooperative Multiagent System for Enhancing Smart Grid Performance

  • Mohammad A Obeidat
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.164-172
    • /
    • 2023
  • Sharing power data between electrical power grids is crucial in energy management. The multi-agent approach has been applied in various applications to improve the development of complex systems by making them both independent and collaborative. The smart grid is one of the most intricate systems that requires a higher level of independence, reliability, protection, and adaptability to user requests. In this paper, a multi-agent system is utilized to share knowledge and tackle challenges in smart grids. The shared information is used to make decisions that aid in power distribution management within the grid and with other networks. The proposed multi-agent mechanism improves the reliability of the power system by providing the necessary information at critical times. The results indicate that the multi-agent system operates efficiently and promptly, making it a highly promising candidate for smart grid management.

A Study on the Standardization of Smart Distribution Board for Electrical Safety (전기안전을 위한 스마트분전반 표준화 연구)

  • Moon, Hyun-Wook;Lim, Young-Bea;Kim, Dong-Woo;Lee, Sang-Ick;Choi, Myeong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.227-231
    • /
    • 2016
  • Electrical disasters have not been greatly reduced despite continuous prevention efforts until now. However, the smart distribution board which can be measured information about general electrical condition such as current, voltage, power, power factor etc. and electrical safety condition such as over-current, leakage current, arc etc. and communicated analysis information about electrical condition with server will be helpful for the prevention of electrical disasters through real-time surveillance and data analysis under smart grids based on the two-way communication. In this paper, the proposal standard of smart distribution board for electrical safety is suggested about the structure, functional requirements of compositions, communication, security and so on.