• Title/Summary/Keyword: Smart Grid Network

Search Result 236, Processing Time 0.028 seconds

Analysis of Smart Grid Network Vulnerability Using Smart Phone (Smart Phone을 통한 Smart Grid 네트워크 접속에서 취약성)

  • Lee, Jae-Hyun;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.240-243
    • /
    • 2010
  • Smart Phone supplies are diffused and substitute the Internet PC with Mobile communications which they are applied. Smart Phone in Smart Grid where electric power watch and the IT of existing amalgamate are used with business. Consequently from Smart Grid network connections which lead Smart Phone in about connection and control in about security vulnerabilities and Smart Grid networks the research is necessary in about vulnerability. It uses Smart Phone from the present paper and when approaching electric power watch systems which lead Smart Grid networks, it researches in about connection vulnerability. Also it uses Smart Phone and after connecting in Smart Grid networks a vulnerability in seizure possibility and, electric power information and control information, about private data etc. access authority it analyzes with the problem point which occurs it confronts it researches. And the research direction for a security reinforcement under presenting boil in about Smart Grid network security vulnerabilities which lead Smart Phone.

  • PDF

A Direction of Convergence and Security of Smart Grid and Information Communication Network (스마트그리드(Smart Grid) 전력망과 정보통신망 융합 보안 방향)

  • Seo, Woo-Seok;Jun, Moon-Seog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.477-486
    • /
    • 2010
  • This Study suggests security directions to reconstruct separate network of Smart Grid and information communication network as one communications system and implement Smart Grid integrated information communication network. In addition, it suggests prevention directions to prevent future cyber attacks by reorganizing network as the key three-stage network and separating TCP/IP four layers that consist of existing information communication network from Smart Grid. Moreover, it suggests the foundation for the study and the test by providing current problems of Smart Grid, weak points, and three security models. This study is meaningful to suggest development directions and situations as a technology of future-oriented electric industries, integrate attacks and preventions of TCP/IP Layers with Smart Grid, and seek for a new technology of Smart Grid and future tasks for Smart Grid information security.

Proposed measure for Smart Grid's Personal Information Security Issue (스마트 그리드 개인정보 보안이슈 방안 제시)

  • Choi, Heesik;Cho, Yanghyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.41-49
    • /
    • 2016
  • Smart Grid is a next generation of new power growth electrical grid which provide high quality of electrical service by using Information Technologies to increase intelligence and performance. By using Smart Grid system, it can support energy management such as increase quality of electrical power, decrease energy and decrease emissions. However, Smart Grid uses information of energy consumption and when Smart Grid collects information, it will create private information. In this thesis, it will address issues of security private information which caused by Smart Grid for administrative measure and efficiency of Smart Grid in domestic. Also, cryptographic module algorithm, latest security solutions and strong wireless security policy for network environment such as wireless communication Iinternet are require for Smart Grid perform successfully and protect national power network equipment from cyber-attack and can stop leakage of user's personal information. Finally, it is urgent to prepare protection measures of National industrial facilities and power grid which can prepare for a cyber terrorism and penetration attacks and build emergency countermeasure management team for Smart Grid are require for safe Smart Grid environment.

A Design of Blockchain-based LoRa Multi-hop Network for Smart Grid (스마트 그리드를 위한 블록체인 기반 LoRa 멀티홉 네트워크 설계)

  • Jeon, Seongho;Kim, Seungku
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.440-448
    • /
    • 2021
  • This paper presents problems of network technology in smart grid and implements a blockchain-based LoRa multi-hop network to solve them. Since some smart grid applications are operated in harsh environments, it is difficult to establish communication infrastructure. We propose a LoRa network with multi-hop using the Flooding routing protocol. Smart grid environment composes an independent network using various power grid protocols depending on the application. Since this has a problem that an independent infrastructure must be established for each network, a single gateway device supports multiple power grid protocols to implement a method for network integration. Lastly, the author applied Hyperledger-based blockchain to the LoRa network to ensure the integrity of data in a smart grid environment, and strengthened security by physically distributing it. After constructing the three suggestions on the actual test bed, we confirmed that the network operates normally through experiments.

Significance and Research Challenges of Defensive and Offensive Cybersecurity in Smart Grid

  • Hana, Mujlid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.29-36
    • /
    • 2022
  • Smart grid (SG) software platforms and communication networks that run and manage the entire grid are increasingly concerned about cyber security. Characteristics of the smart grid networks, including heterogeneity, time restrictions, bandwidth, scalability, and other factors make it difficult to secure. The age-old strategy of "building bigger walls" is no longer sufficient given the rise in the quantity and size of cyberattacks as well as the sophisticated methods threat actor uses to hide their actions. Cyber security experts utilize technologies and procedures to defend IT systems and data from intruders. The primary objective of every organization's cybersecurity team is to safeguard data and information technology (IT) infrastructure. Consequently, further research is required to create guidelines and methods that are compatible with smart grid security. In this study, we have discussed objectives of of smart grid security, challenges of smart grid security, defensive cybersecurity techniques, offensive cybersecurity techniques and open research challenges of cybersecurity.

A Source Code Cross-site Scripting Vulnerability Detection Method

  • Mu Chen;Lu Chen;Zhipeng Shao;Zaojian Dai;Nige Li;Xingjie Huang;Qian Dang;Xinjian Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1689-1705
    • /
    • 2023
  • To deal with the potential XSS vulnerabilities in the source code of the power communication network, an XSS vulnerability detection method combining the static analysis method with the dynamic testing method is proposed. The static analysis method aims to analyze the structure and content of the source code. We construct a set of feature expressions to match malignant content and set a "variable conversion" method to analyze the data flow of the code that implements interactive functions. The static analysis method explores the vulnerabilities existing in the source code structure and code content. Dynamic testing aims to simulate network attacks to reflect whether there are vulnerabilities in web pages. We construct many attack vectors and implemented the test in the Selenium tool. Due to the combination of the two analysis methods, XSS vulnerability discovery research could be conducted from two aspects: "white-box testing" and "black-box testing". Tests show that this method can effectively detect XSS vulnerabilities in the source code of the power communication network.

PPNC: Privacy Preserving Scheme for Random Linear Network Coding in Smart Grid

  • He, Shiming;Zeng, Weini;Xie, Kun;Yang, Hongming;Lai, Mingyong;Su, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1510-1532
    • /
    • 2017
  • In smart grid, privacy implications to individuals and their families are an important issue because of the fine-grained usage data collection. Wireless communications are utilized by many utility companies to obtain information. Network coding is exploited in smart grids, to enhance network performance in terms of throughput, delay, robustness, and energy consumption. However, random linear network coding introduces a new challenge for privacy preserving due to the encoding of data and updating of coefficients in forwarder nodes. We propose a distributed privacy preserving scheme for random linear network coding in smart grid that considers the converged flows character of the smart grid and exploits a homomorphic encryption function to decrease the complexities in the forwarder node. It offers a data confidentiality privacy preserving feature, which can efficiently thwart traffic analysis. The data of the packet is encrypted and the tag of the packet is encrypted by a homomorphic encryption function. The forwarder node random linearly codes the encrypted data and directly processes the cryptotext tags based on the homomorphism feature. Extensive security analysis and performance evaluations demonstrate the validity and efficiency of the proposed scheme.

An Efficient AMI Simulator Design adapted in Smart Grid (스마트그리드에서의 효율적인 AMI 구현을 위한 통합 시뮬레이터 설계)

  • Yang, Il-Kwon;Choi, Seung-Hwan;Lee, Sang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1368-1375
    • /
    • 2013
  • The Smart Grid, which can monitor or diagnose the power grid in real time to operate efficiently, has been pushed ahead systematically as one of alternatives to solve these issues by combining the advanced Information Communication Technology and the electrical network. Hence, the electric company which introduces smart grid technology can read remotely the electrical meter readings by means of two-way communication between the meter and the central system. This enabled the customer and the utility to take part in reasonable electrical energy utilization. AMI became one of the core foundations in realizing the Smart Grid. It is hard to test the entire process of AMI system before the full deployment because it covers the broad objects from the customer to the utility operation system and requires mass data handling and management. Therefore, we design an efficient AMI network model and a simulator for performance evaluation required to simulate the network model similar to the real environment. This tool supports to evaluate the efficiency of the AMI network equipments and deployment. Additionally, it estimates the appropriate number of deployments and the proper capabilities.

Smart Grid (긴급제언 - 스마트 그리드)

  • Chung, Choon-Byeong
    • Journal of the Korean Professional Engineers Association
    • /
    • v.42 no.6
    • /
    • pp.36-41
    • /
    • 2009
  • Smart Grid is grafting IT(information technology) techniques on existing electric power network, supplier and the consumer to do real-time exchange of information lead to both direction and energy efficiency optimization, it is a next potential electric power network method. Because of applying various distributed electric power sources, the electric power network system will follow in size and it is dispersive and it will operate independently, and it become the intelligent electric power network, which in consumer demand reacts at real-time, because of using various sensors. In this article explain concept, features, and contemporary background of Smart Grid, and describe improve reliability of the electric power quality.

  • PDF

PLC-Based Smart grid Home Network System Design and Implementation using OPNET Simulation

  • Huh, Jun-Ho;Seo, Kyungryong
    • Journal of Multimedia Information System
    • /
    • v.1 no.2
    • /
    • pp.111-118
    • /
    • 2014
  • The Smart grid refers to the technology that enables efficient usage of electric power by collecting information concerning the power usage and power lines grafting information and communications technology to onto power grids. There are Zigbee, PLC or IEEE 802.11 WLAN MAC as a core technology of the Smart grid, but in this paper, the discussion is focused on the PLC. The PLC is the technology that carries out data communications using power lines and put into practical use in the field of lights or home appliances control recently but PLC-applied communications between electronic devices are rarely seen. For the reason that the PLC uses high-voltage power lines and has a disadvantage of experiencing higher data loss rate caused by the noises produced by going through transformers, the technology is yet to be used in many areas. Nevertheless, the PLC has been studied widely recently in respect that it's the low-cost communication solution for the Smart Metering [1]. Moreover, this technology is emerging as a novel data communication method and discussed as an important technology lately due to the developments of the Smart grid systems and Internet of things (IoT). Thus, in this paper, the results obtained from designing and performing implementation scenario for the PLC-based Smart grid home network system were compared and analyzed with that of IEEE 802.11 WLAN MAC (the foundation technology at Jeju Smart grid Test bed)-based Smart grid home network. Thus, in this paper, OPNET 14.5 PL8, OSI 7 layer, PLC router nodes and PLC nodes had been used for the designing and implementation simulations of both systems. Additionally, QoS was not considered in order to guarantee that all the traffics would not have the same processing priority.

  • PDF