• 제목/요약/키워드: Smart Framework

검색결과 682건 처리시간 0.022초

Vibration Analysis of Smart Embedded Shear Deformable Nonhomogeneous Piezoelectric Nanoscale Beams based on Nonlocal Elasticity Theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Zenkour, Ashraf M.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.255-269
    • /
    • 2017
  • Free vibration analysis is presented for a simply-supported, functionally graded piezoelectric (FGP) nanobeam embedded on elastic foundation in the framework of third order parabolic shear deformation beam theory. Effective electro-mechanical properties of FGP nanobeam are supposed to be variable throughout the thickness based on power-law model. To incorporate the small size effects into the local model, Eringen's nonlocal elasticity theory is adopted. Analytical solution is implemented to solve the size-dependent buckling analysis of FGP nanobeams based upon a higher order shear deformation beam theory where coupled equations obtained using Hamilton's principle exist for such beams. Some numerical results for natural frequencies of the FGP nanobeams are prepared, which include the influences of elastic coefficients of foundation, electric voltage, material and geometrical parameters and mode number. This study is motivated by the absence of articles in the technical literature and provides beneficial results for accurate FGP structures design.

Application of principal component analysis and wavelet transform to fatigue crack detection in waveguides

  • Cammarata, Marcello;Rizzo, Piervincenzo;Dutta, Debaditya;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제6권4호
    • /
    • pp.349-362
    • /
    • 2010
  • Ultrasonic Guided Waves (UGWs) are a useful tool in structural health monitoring (SHM) applications that can benefit from built-in transduction, moderately large inspection ranges and high sensitivity to small flaws. This paper describes a SHM method based on UGWs, discrete wavelet transform (DWT), and principal component analysis (PCA) able to detect and quantify the onset and propagation of fatigue cracks in structural waveguides. The method combines the advantages of guided wave signals processed through the DWT with the outcomes of selecting defect-sensitive features to perform a multivariate diagnosis of damage. This diagnosis is based on the PCA. The framework presented in this paper is applied to the detection of fatigue cracks in a steel beam. The probing hardware consists of a PXI platform that controls the generation and measurement of the ultrasonic signals by means of piezoelectric transducers made of Lead Zirconate Titanate. Although the approach is demonstrated in a beam test, it is argued that the proposed method is general and applicable to any structure that can sustain the propagation of UGWs.

조직구성원의 네트워크 위치가 지식공유에 미치는 영향 (Effects of Network Positions of Organizational Members on Knowledge Sharing)

  • 김창식;곽기영
    • 지식경영연구
    • /
    • 제16권2호
    • /
    • pp.67-89
    • /
    • 2015
  • Improving productivity of knowledge workers is an important issue in the 21st century referred as knowledge-based society. The core key word is knowledge sharing among constituents of an organization. The purpose of this study is to combine the social network position factors with attitude and behavior factors, and develop an integrated research model for the knowledge sharing among members of an organization. This study adopted the integrated theoretical framework based on social capital, self-efficacy, transactive memory, and knowledge sharing. Surveys were conducted to 42 organizational members from a department in a leading IT outsourcing company to empirically test the proposed research model. In order to validate the proposed research model, social network analysis tool, UCINET, a structural equation modeling tool, SmartPLS, were utilized. The empirical result showed that, first of all, organizational members' familiarity network position had significant influence on knowledge self-efficacy and transactive memory capability. Second, knowledge self-efficacy and transactive memory capability affected knowledge sharing intention. Third, knowledge sharing intention also had an impact on the job performance. However, organizational members' expertise network position had no significant influence on knowledge self-efficacy and transactive memory capability. This finding reveals the importance of the emotional approach rather than the rational approach in knowledge management. The theoretical and practical implications on the research findings were discussed along with limitations.

A Scalable Wireless Body Area Network for Bio-Telemetry

  • Saeed, Adnan;Faezipour, Miad;Nourani, Mehrdad;Banerjee, Subhash;Lee, Gil;Gupta, Gopal;Tamil, Lakshman
    • Journal of Information Processing Systems
    • /
    • 제5권2호
    • /
    • pp.77-86
    • /
    • 2009
  • In this paper, we propose a framework for the real-time monitoring of wireless biosensors. This is a scalable platform that requires minimum human interaction during set-up and monitoring. Its main components include a biosensor, a smart gateway to automatically set up the body area network, a mechanism for delivering data to an Internet monitoring server, and automatic data collection, profiling and feature extraction from bio-potentials. Such a system could increase the quality of life and significantly lower healthcare costs for everyone in general, and for the elderly and those with disabilities in particular.

IoT 스마트 홈 환경을 위한 상황 인식 추론 프레임워크 설계 및 구현 (Design and Implementation of Context-aware Inference Framework for IoT Smart Home Environment)

  • 이정준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제51차 동계학술대회논문집 23권1호
    • /
    • pp.247-250
    • /
    • 2015
  • 과거 유비쿼터스 기술의 출현 이후로 사물에 간단한 인식 센서를 이용한 형태의 서비스가 널리 보급되었고, 스마트 기기의 발달로 인해 PC가 아닌 환경에서도 인터넷을 사용하기 용이한 환경이 정착되어, 이들을 이용한 사물 인터넷 (Internet of Things) 환경이 빠르게 확산중이다. 본 논문에서는 상황 인식 서비스와 추론 서비스를 사물 인터넷 환경에 적용 시킨 스마트 홈 상황인식 추론 프레임 워크의 설계 및 구현을 서술한다. 해당 프레임 워크는 실질적인 상황 정보를 제공하는 이기종의 사물 인터넷 기기 간 데이터 타입을 수용하기 위해 온톨로지 언어인 OWL 규격을 사용하여 상황 정보를 수용하고, 룰 입력 모듈을 통해 다양한 환경을 모델링 할 수 있는 XML 규격의 서비스 룰을 입력받는다. 이후, 상황 정보와 서비스 룰을 기반으로 추론엔진을 통해 상황을 추론하여, 단순히 조건 만족 시 실행 구조가 아닌 상황 기반의 추론에 의한 서비스를 제공하게 된다. 프레임 워크를 활용 방안을 설명하기 위해 예제 방범 시나리오를 통해 해당 프레임 워크의 특징 및 서비스의 흐름을 서술한다.

  • PDF

The Influence of Learning Styles on a Model of IoT-based Inclusive Education and Its Architecture

  • Sayassatov, Dulan;Cho, Namjae
    • Journal of Information Technology Applications and Management
    • /
    • 제26권5호
    • /
    • pp.27-39
    • /
    • 2019
  • The Internet of Things (IoT) is a new paradigm that is revolutionizing computing. It is intended that all objects around us will be connected to the network, providing "anytime, anywhere" access to information. This study introduces IoT with Kolb's learning style in order to enhance the learning experience especially for inclusive education for primary and secondary schools where delivery of knowledge is not limited to physical, cognitive disabilities, human diversity with respect to ability, language, culture, gender, age and of other forms of human differences. The article also emphasizes the role of learning style as a discovery process that incorporates the characteristics of problem solving and learning. Kolb's Learning Style was chosen as it is widely used in research and in practical information systems applications. A consistent pattern of finding emerges by using a combination of Kolb's learning style and internet of things where specific individual differences, learning approach differences and IoT application differences are taken as a main research framework. Further several suggestions were made by using this combination to IoT architecture and smart environment of internet of things. Based on these suggestions, future research directions are proposed.

Debonding monitoring of CFRP strengthened RC beams using active sensing and infrared imaging

  • Sohn, Hoon;Kim, Seung Dae;In, Chi Won;Cronin, Kelly E.;Harries, Kent
    • Smart Structures and Systems
    • /
    • 제4권4호
    • /
    • pp.391-406
    • /
    • 2008
  • This study attempts to develop a real-time debonding monitoring system for carbon fiber-reinforced polymer (CFRP) strengthened structures by continuously inspecting the bonding condition between the CFRP layer and the host structure. The uniqueness of this study is in developing a new concept and theoretical framework of nondestructive testing (NDT), in which debonding is detected without relying on previously-obtained baseline data. The proposed reference-free damage diagnosis is achieved based on the concept of time reversal acoustics (TRA). In TRA, an input signal at an excitation point can be reconstructed if the response signal measured at another point is reemitted to the original excitation point after being reversed in the time domain. Examining the deviation of the reconstructed signal from the known initial input signal allows instantaneous identification of damage without requiring a baseline signal representing the undamaged state for comparison. The concept of TRA has been extended to guided wave propagations within the CFRP-strengthened reinforced concrete (RC) beams to improve the detectibility of local debonding. Monotonic and fatigue load tests of large-scale CFRP-strengthened RC beams are conducted to demonstrate the potential of the proposed reference-free debonding monitoring system. Comparisons with an electro-mechanical impedance method and an inferred imaging technique are provided as well.

Health monitoring of a historical monument in Jordan based on ambient vibration test

  • Bani-Hani, Khaldoon A.;Zibdeh, Hazem S.;Hamdaoui, Karim
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.195-208
    • /
    • 2008
  • This paper summarizes the experimental vibration-based structural health monitoring study on a historical monument in Jordan. In this work, and within the framework of the European Commission funded project "wide-Range Non-Intrusive Devices Toward Conservation of Historical Monuments in the Mediterranean Area", a seven and a half century old minaret located in Ajloun (73 km north of the capital Amman) is studied. Because of their cultural value, touristic importance and the desire to preserve them for the future, only non-destructive tests were allowed for the experimental investigation of such heritage structures. Therefore, after dimensional measurements and determination of the current state of damage in the selected monument, ambient vibration tests are conducted to measure the accelerations at strategic locations of the system. Output-only modal identification technique is applied to extract the modal parameters such as natural frequencies and mode shapes. A Non-linear version of SAP 2000 computer program is used to develop a three-dimensional finite element model of the minaret. The developed numerical model is then updated according to the modal parameters obtained experimentally by the ambient-vibration test-results and the measured characteristics of old stone and deteriorated mortar. Moreover, a parametric identification method using the N4Sid state space model is employed to model the dynamic behavior of the minaret and to build up a robust, immune and noise tolerant model.

Use of copper shape memory alloys in retrofitting historical monuments

  • El-Borgi, S.;Neifar, M.;Jabeur, M. Ben;Cherif, D.;Smaoui, H.
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.247-259
    • /
    • 2008
  • The potential use of Cu-based shape memory alloys (SMA) in retrofitting historical monuments is investigated in this paper. This study is part of the ongoing work conducted in Tunisia within the framework of the FP6 European Union project (WIND-CHIME) on the use of appropriate modern seismic protective systems in the conservation of Mediterranean historical buildings in earthquake-prone areas. The present investigation consists of a finite element simulation, as a preliminary to an experimental study where a cantilever masonry wall, representing a part of a historical monument, is subjected to monotonic and quasi-static cyclic loadings around a horizontal axis at the base level. The wall was retrofitted with an array of copper SMA wires with different cross-sectional areas. A new model is proposed for heat-treated copper SMAs and is validated based on published experimental results. A series of nonlinear finite element analyses are then performed on the wall for the purpose of assessing the SMA device retrofitting capabilities. Simulation results show an improvement of the wall response for the case of monotonic and quasi-static cyclic loadings.

Semi-analytical vibration analysis of functionally graded size-dependent nanobeams with various boundary conditions

  • Ebrahimi, Farzad;Salari, Erfan
    • Smart Structures and Systems
    • /
    • 제19권3호
    • /
    • pp.243-257
    • /
    • 2017
  • In this paper, free vibration of functionally graded (FG) size-dependent nanobeams is studied within the framework of nonlocal Timoshenko beam model. It is assumed that material properties of the FG nanobeam, vary continuously through the thickness according to a power-law form. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The non-classical governing differential equations of motion are derived through Hamilton's principle and they are solved utilizing both Navier-based analytical method and an efficient and semi-analytical technique called differential transformation method (DTM). Various types of boundary conditions such as simply-supported, clamped-clamped, clamped-simply and clamped-free are assumed for edge supports. The good agreement between the presented DTM and analytical results of this article and those available in the literature validated the presented approach. It is demonstrated that the DTM has high precision and computational efficiency in the vibration analysis of FG nanobeams. The obtained results show the significance of the material graduation, nonlocal effect, slenderness ratio and boundary conditions on the vibration characteristics of FG nanobeams.